缺血/缺氧预适应是一种通过暴露于短暂和可控的缺血或缺氧环境,诱导机体产生对随后的长时间缺血或缺氧损伤的耐受性,从而实现神经保护的重要策略。近年来,随着对脑血管疾病及其相关病理机制的深入研究,缺血/缺氧预适应作为一种潜在的神经保护策略,受到广泛关注。脑组织对缺血/缺氧的耐受能力是决定脑卒中预后和神经功能恢复的关键因素,而缺血/缺氧预适应通过多种途径对脑神经元及其周围环境进行保护,为神经系统疾病的治疗提供了全新思路。缺血/缺氧预适应神经保护机制复杂,其通过激活AMPK和PI3K/Akt通路,增强神经元的存活能力。此外,缺血/缺氧预适应还可通过调控线粒体功能、减少活性氧生成、调节钙离子稳态以及抑制细胞凋亡等途径,对神经元发挥保护作用。同时,缺血/缺氧预适应能够诱导热激蛋白和抗氧化酶的表达,加强其在缺血/缺氧条件下的神经保护效果。与此同时,IPC/HPC还可通过调节神经胶质细胞的功能,改善神经元-胶质细胞相互作用,维持神经微环境的稳定性。
[1] Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium[J]. Circulation, 1986, 74(5): 1124-1136.
[2] 何克, 孙官军, 彭旭, 等. 间歇性低氧预适应对力竭运动大鼠心肌自噬蛋白表达及相关通路的影响[J]. 心脏杂志, 2022, 34(5): 502-509.
[3] 孙梦雅, 李婷, 姜红. 氙气对新生儿缺氧缺血性脑病的神经保护作用及其可能机制[J]. 中华围产医学杂志, 2023, 26(4): 339-343.
[4] 付竹, 丁娜, 胡志斌, 等. 紫檀芪调节LKB1/AMPK信号通路减轻缺氧缺血性脑损伤新生大鼠氧化应激损伤[J]. 儿科药学杂志, 2023, 29(6): 1-5.
[5] 赵健衡, 王丽, 蒋燕, 等. 丙泊酚调节SIRT1/HMGB1/NF-κB信号通路对缺血缺氧性脑损伤新生大鼠神经元损伤的影响[J]. 中国优生与遗传杂志, 2023, 31(4): 708-714.
[6] 周璐, 唐丽亚, 蒋琼, 等. 运动预处理对脑缺血再灌注损伤大鼠缺血区脑组织血管新生及HIF-1α和VEGF蛋白表达的影响[J]. 中华物理医学与康复杂志, 2024, 46(1): 1-6.
[7] Zhu T, Zhan L, Liang D, et al. Hypoxia-inducible factor 1α mediates neuroprotection of hypoxic postconditioning against global cerebral ischemia[J]. J Neuropathol Exp Neurol, 2014, 73(10): 975-986.
[8] Shao G, Gao CY, Lu GW. Alterations of hypoxia-inducible factor-1 alpha in the hippocampus of mice acutely and repeatedly exposed to hypoxia[J]. Neurosignals, 2005, 14(5): 255-261.
[9] 付孝娟, 赵源征. K+ATP通道开放剂尼可地尔对缺血性脑卒中小鼠模型的脑保护作用及机制[J]. 中国神经免疫学和神经病学杂志, 2023, 30(1): 25-29, 38.
[10] Stenzel-Poore MP, Stevens SL, Xiong Z, et al. Effect of ischaemic preconditioning on genomic response to cerebral ischaemia: similarity to neuroprotective strategies in hibernation and hypoxia-tolerant states[J]. Lancet, 2003, 362(9389): 1028-1037.
[11] 于馨雅, 申元英, 郭乐. Nrf2/HO-1通路在氧化应激和炎性反应中的作用[J]. 医学研究杂志, 2023, 52(7): 19-22.
[12] 董秀, 包红, 韩兆丰. 去甲斑蝥素诱导超氧阴离子的产生介导HeLa细胞线粒体途径的细胞凋亡[J]. 吉林中医药, 2021, 41(8): 1070-1073.
[13] Sheng R, Liu XQ, Zhang LS, et al. Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning[J]. Autophagy, 2012, 8(3): 310-325.
[14] 朱博超, 李彦杰, 秦合伟, 等. 针刺通过TLR4/NF-KB信号通路调控炎症反应治疗中枢神经系统疾病的作用机制研究进展[J]. 中医药导报, 2023, 29(2): 160-165.
[15] 杨静, 侯冰, 武文清, 等. 低氧预适应对小鼠海马神经元细胞的保护作用及其相关基因[J]. 华夏医学, 2023, 36(4): 32-37.
[16] Cui GH, Wu J, Mou FF, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB J, 2018, 32(2): 654-668.
[17] Miranda CTCBC, Fagundes DJ, Miranda E, et al. The role of ischemic preconditioning in the expression of apoptosis-related genes in a rat model of intestinal ischemia-reperfusion injury[J]. Acta Cirurgica Brasileira, 2019, 34(5): e201900501.
[18] Emberson J, Lees KR, Lyden P, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials[J]. Lancet, 2014, 384(9958): 1929-1935.
[19] Mazumdar J, O′brien WT, Johnson RS, et al. O2 regulates stem cells through Wnt/β-catenin signalling[J]. Nat Cell Biol, 2010, 12(10): 1007-1013.
[20] 郭漫, 沈道琪, 於佳炜, 等. miR-21对肾脏缺血/缺氧耐受中血管适应性调整的调控作用[J]. 中国中西医结合肾病杂志, 2023, 24(9): 768-772,后插1.
[21] Lalu MM, Montroy J, Dowlatshahi D, et al. From the lab to patients: a systematic review and meta-analysis of mesenchymal stem cell therapy for stroke[J]. Transl Stroke Res, 2020, 11: 345-364.