基础医学论著

鲍曼不动杆菌5075株Hcp基因的蛋白生物信息分析及原核表达载体的构建*

  • 丁瑞培 ,
  • 穆如雪 ,
  • 张宇 ,
  • 李子龙 ,
  • 李柳燕 ,
  • 王依琳 ,
  • 叶英 ,
  • 何茂章
展开
  • 1.安徽医科大学基础医学院微生物学教研室,安徽合肥 230032;
    2.安徽医科大学第一附属医院感染科
何茂章

收稿日期: 2025-02-28

  网络出版日期: 2025-10-11

基金资助

*安徽省自然科学基金青年项目(2308085QH283);安徽省教育厅青年骨干教师境内访学研修资助项目(gxjnfx2023003);安徽医科大学大学生创新创业项目(202310366054)

Proteinbioinformatics analysis of the Hcp gene and construction of prokaryotic expression vector in Acinetobacter baumannii strain 5075

  • DING Ruipei ,
  • MU Ruxue ,
  • ZHANG Yu ,
  • LI Zilong ,
  • LI Liuyan ,
  • WANG Yilin ,
  • YE Ying ,
  • HE Maozhang
Expand
  • 1. Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China;
    2. Department of Infection, the First Affiliated Hospital of Anhui Medical University

Received date: 2025-02-28

  Online published: 2025-10-11

摘要

目的:构建鲍曼不动杆菌5075株溶血素共调节蛋白(Hcp)基因的原核表达载体,完成蛋白的高效表达与纯化。方法:在Hcp蛋白生物信息分析的基础上,通过PCR方法扩增目的基因,对目的片段和pET-28a(+)质粒分别进行BamHⅠ和XhoⅠ位点的双酶切后连接并转化DH5α大肠埃希菌,于含抗卡那霉素的LB固体培养基上筛选,随机挑取单菌落进行菌落PCR鉴定及测序鉴定。将测序正确的pET-28a(+)-Hcp重组质粒再次转化E.coliBL21(DE3)中,探索合适的诱导条件。IPTG诱导Hcp蛋白分别在37℃和18℃进行表达,再采用BeyoMagTMHis标签蛋白纯化琼脂糖磁珠(NTA-Ni)纯化目的蛋白。结果:Hcp蛋白的生信分析显示,鲍曼不动杆菌Ab5075_Hcp基因编码167个氨基酸,蛋白质分子式为C833H1278N228O260S3,理论蛋白分子量大小为18.7kDa,蛋白等电点为6.52,不稳定指数为32.86,脂肪族指数为67.13,亲水性平均值为-0.625,为亲水稳定蛋白。无跨膜区和信号肽,序列高度保守。二级结构主要有无规则卷曲和延伸链。Hcp蛋白亚细胞定位于细胞核,有5个潜在的B细胞抗原表位。本研究成功构建Hcp基因原核表达载体,诱导表达后纯化获得大量可溶性Hcp蛋白,达到最适诱导条件为IPTG0.5mmol/L时,18℃下诱导15~16h。结论:鲍曼不动杆菌Ab5075_Hcp蛋白在预测值合理范围内且纯化效果较好,适合用于制备抗体以及候选疫苗的实验。

本文引用格式

丁瑞培 , 穆如雪 , 张宇 , 李子龙 , 李柳燕 , 王依琳 , 叶英 , 何茂章 . 鲍曼不动杆菌5075株Hcp基因的蛋白生物信息分析及原核表达载体的构建*[J]. 包头医学院学报, 2025 , 41(9) : 33 -41 . DOI: 10.16833/j.cnki.jbmc.2025.09.006

Abstract

Objective: To construct a prokaryotic expression vector for the hemolysin co-regulated protein (Hcp) gene from Acinetobacter baumannii strain 5075, and to achieve high-efficiency expression and purification of the protein. Methods: Based on the bioinformatics analysis of Hcp protein, the target gene was amplified by PCR. The target fragment and pET-28a(+) plasmid were digested with BamHⅠ and XhoⅠ, ligated and transformed into E.coli DH5α, and screened on LB solid medium containing kanamycin. Single colonies were randomly selected for colony PCR identification and sequencing. The recombinant plasmid pET-28a(+)-Hcp was transformed into E.coli BL21 (DE3) again to explore the suitable induction conditions. The expression of Hcp protein was induced by IPTG at 37 ℃ and 18 ℃, respectively, and the target protein was purified by BeyoMagTM His tag protein purification agarose magnetic beads (NTA-Ni). Results: The bioinformatics analysis of Hcp protein showed that the Ab5075_Hcp gene from A. baumannii encodes 167 amino acids, with a protein formula of C833H1278N228O260S3, the theoretical protein molecular weight was 18.7 kDa, the protein isoelectric point was 6.52, the instability index was 32.86, the aliphatic index was 67.13, and the average hydrophilicity was -0.625, which was a hydrophilic stable protein. There was no transmembrane region and signal peptide, and the sequence is highly conserved. The secondary structure mainly had regular curl and extension chain. Hcp protein was located in the nucleus and had five potential B cell epitopes. In this study, the prokaryotic expression vector of Hcp gene was successfully constructed, and a large amount of soluble Hcp protein was purified after induction expression. The optimal induction conditions were IPTG 0.5 mmol/L and induction at 18 ℃ for 15-16 h. Conclusion: The Ab5075_Hcp protein of Acinetobacter baumannii is within a reasonable range of predicted values and has a good purification effect, which is suitable for the preparation of antibodies and candidate vaccines.

参考文献

[1] Lee CR, Lee JH, Park M, et al. Biology of Acinetobacter baumannii: pathogenesis, antibiotic resistance mechanisms, and prospective treatment options[J]. Front Cell Infect Microbiol, 2017,7:55.
[2] Whiteway C, Breine A, Philippe C, et al. Acinetobacter baumannii[J]. Trends Microbiol, 2022,30(2):199-200.
[3] Giammanco A, Calà C, Fasciana T, et al. Global assessment of the activity of tigecycline against multidrug-resistant gram-negative pathogens between 2004 and 2014 as part of the tigecycline evaluation and surveillance trial[J]. mSphere, 2017,2(1):e00310-16.
[4] Antunes LCS, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen[J]. Pathog Dis, 2014,71(3):292-301.
[5] Kandolo O, Cherrak Y, Filella Merce I, et al. Acinetobacter type VI secretion system comprises a non-canonical membrane complex[J]. PLoS Pathog, 2023,19(9):e1011687.
[6] Repizo GD, Gagné S, Foucault Grunenwald ML, et al. Differential role of the T6SS in Acinetobacter baumannii virulence[J]. PLoS One, 2015,10(9):e0138265.
[7] 王海蓉, 宁年智, 王慧. 鲍曼不动杆菌Ⅵ型分泌系统功能蛋白的研究及应用新进展[J]. 微生物学报, 2024, 64(2): 391-407.
[8] Hu YY, Chen S, Zhang YD, et al. Value of T6SS core gene hcp in Acinetobacter baumannii respiratory tract infection[J]. Indian J Microbiol, 2023,63(3):291-298.
[9] 胡音音. 鲍曼不动杆菌溶血素共调节蛋白hcp基因及其致病性相关研究[D]. 温州: 温州医科大学, 2018.
[10] 董俊芳, 王萍, 刘存伟, 等. 鲍曼不动杆菌无痕基因敲除及hcp基因相关功能[J]. 微生物学通报, 2021, 48(3): 811-819.
[11] Shi JC, Cheng JH, Liu SR, et al. Acinetobacter baumannii: an evolving and cunning opponent[J]. Front Microbiol, 2024,15:1332108.
[12] Muno Price LS, Weinstein RA. Acinetobacter infection[J]. N Engl J Med, 2008,358(12):1271-1281.
[13] Ayoub Moubareck C, Hammoudi Halat D. Insights into Acinetobacter baumannii: a review of microbiological, virulence, and resistance traits in a threatening nosocomial pathogen[J]. Antibiotics (Basel), 2020,9(3):119.
[14] Teerawattanapong N, Panich P, Kulpokin D, et al. A systematic review of the burden of multidrug-resistant healthcare-associated infections among intensive care unit patients in Southeast Asia: the rise of multidrug-resistant Acinetobacter baumannii[J]. Infect Control Hosp Epidemiol, 2018,39(5):525-533.
[15] Ibrahim S, Al Saryi N, Al Kadmy IMS, et al. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals[J]. Mol Biol Rep, 2021,48(10):6987-6998.
[16] Dong JF, Liu CW, Wang P, et al. The type VI secretion system in Acinetobacter baumannii clinical isolates and its roles in antimicrobial resistance acquisition[J]. Microb Pathog, 2022,169:105668.
[17] Weber BS, Miyata ST, Iwashkiw JA, et al. Genomic and functional analysis of the type VI secretion system in Acinetobacter[J]. PLoS One, 2013,8(1):e55142.
[18] Li P, Zhang SR, Wang JD, et al. The role of type VI secretion system genes in antibiotic resistance and virulence in Acinetobacter baumannii clinical isolates[J]. Front Cell Infect Microbiol, 2024,14:1297818.
[19] Lin L, Capozzoli R, Ferrand A, et al. Subcellular localization of Type VI secretion system assembly in response to cell-cell contact[J]. EMBO J, 2022,41(13):e108595.
文章导航

/