综述

骨髓间充质干细胞修复膝关节软骨损伤机制的研究进展*

  • 王李妮 ,
  • 姚长风 ,
  • 单自亮 ,
  • 王科文 ,
  • 李德坤 ,
  • 张宪基
展开
  • 1.江西省吉安市中心人民医院中医科,江西吉安 343016;
    2.安徽中医药大学针灸推拿学院
姚长风

收稿日期: 2025-02-28

  网络出版日期: 2025-09-12

基金资助

*安徽省自然科学基金面上项目(1508085MH165);安徽省高等学校省级质量工程项目(2022cxtd082)

Research progress on the mechanism of bone marrow mesenchymal stem cells in repairing knee joint cartilage injury

  • WANG Lini ,
  • YAO Changfeng ,
  • SHAN Ziliang ,
  • WANG Kewen ,
  • LI Dekun ,
  • ZHANG Xianji
Expand
  • 1. Department of Traditional Chinese Medicine, Ji'an Central People's Hospital, Ji'an 343016,China;
    2. School of Acupuncture and moxibustion and Massage, Anhui University of Traditional Chinese Medicine

Received date: 2025-02-28

  Online published: 2025-09-12

摘要

膝骨关节炎(knee osteoarthritis, KOA)是临床常见的退行性骨关节疾病,其主要病理特征包括关节软骨退行性变、关节结构改变、滑膜炎症及骨质增生,延缓软骨退变、促进软骨修复是改善膝关节疼痛、功能的重要途径。骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMSCs)具有分化功能和自我更新的潜力,可能具有促进软骨的修复与再生的能力,因此BMSCs在骨关节疾病的治疗中受到了广泛关注并被深入研究。本文基于现代分子生物学技术,系统归纳了近期关于BMSCs在修复膝关节软骨损伤方面的基础和临床相关文献,通过综述BMSCs在膝关节软骨修复中的研究现状,旨在为膝骨关节炎的治疗提供新的思路和方法。

本文引用格式

王李妮 , 姚长风 , 单自亮 , 王科文 , 李德坤 , 张宪基 . 骨髓间充质干细胞修复膝关节软骨损伤机制的研究进展*[J]. 包头医学院学报, 2025 , 41(8) : 92 -96 . DOI: 10.16833/j.cnki.jbmc.2025.08.016

参考文献

[1] Zmerly H, El Ghoch M, Itani L, et al. Personalized nutritional strategies to reduce knee osteoarthritis severity and ameliorate sarcopenic obesity indices: a practical guide in an orthopedic setting[J]. Nutrients, 2023, 15(14): 3085.
[2] 单自亮, 李德坤, 李鑫, 等. 调控膝骨关节炎中骨代谢信号通路研究进展[J]. 解剖学研究,2024, 46(1): 73-76, 93.
[3] Yao Q, Wu XH, Tao C, et al. Osteoarthritis: pathogenic signaling pathways and therapeutic targets[J]. Signal Transduct Target Ther, 2023, 8(1): 56.
[4] 刘晓强. 关节软骨细胞诱导骨髓间充质干细胞向软骨样细胞分化的研究[D]. 福州: 福建医科大学, 2010.
[5] Yang GQ, Fan XH, Liu YC, et al. Immunomodulatory mechanisms and therapeutic potential of mesenchymal stem cells[J]. Stem Cell Rev Rep, 2023, 19(5): 1214-1231.
[6] Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, et al. Mesenchymal stem cells: amazing remedies for bone and cartilage defects[J]. Stem Cell Res Ther, 2020, 11(1): 492.
[7] Chen Y, Cheng RJ, Wu YL, et al. Advances in stem cell-based therapies in the treatment of osteoarthritis[J]. Int J Mol Sci, 2023, 25(1): 394.
[8] Kuroda Y, Kitada M, Wakao S, et al. Bone marrow mesenchymal cells: how do they contribute to tissue repair and are they really stem cells[J]. Arch Immunol Ther Exp (Warsz), 2011, 59(5): 369-378.
[9] Liu JX, Gao JF, Liang ZX, et al. Mesenchymal stem cells and their microenvironment[J]. Stem Cell Res Ther, 2022, 13(1): 429.
[10] Song KP, Hu J, Yang M, et al. Pulsed electromagnetic fields potentiate bone marrow mesenchymal stem cell chondrogenesis by regulating the Wnt/β-catenin signaling pathway[J]. J Transl Med, 2024, 22(1): 741.
[11] Song YC, Zhang JH, Xu HL, et al. Mesenchymal stem cells in knee osteoarthritis treatment: a systematic review and meta-analysis[J]. J Orthop Translat, 2020, 24: 121-130.
[12] 宗文浩, 李可峰, 郭炜炜, 等. 自主运动对高脂饮食诱导的肥胖小鼠膝骨关节炎软骨形态学的影响[J]. 中国骨质疏松杂志, 2019, 25(9): 1273-1279.
[13] Hodgkinson T, Kelly DC, Curtin CM, et al. Mechanosignalling in cartilage: an emerging target for the treatment of osteoarthritis[J]. Nat Rev Rheumatol, 2022, 18(2): 67-84.
[14] Wei PX, Bao RX. Intra-articular mesenchymal stem cell injection for knee osteoarthritis: mechanisms and clinical evidence[J]. Int J Mol Sci, 2022, 24(1): 59.
[15] Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease[J]. Nat Rev Immunol, 2008, 8(9): 726-736.
[16] Diekman BO, Wu CL, Louer CR, et al. Intra-articular delivery of purified mesenchymal stem cells from C57BL/6 or MRL/MpJ superhealer mice prevents posttraumatic arthritis[J]. Cell Transplant, 2013, 22(8): 1395-1408.
[17] Cui GH, Wang YY, Li CJ, et al. Efficacy of mesenchymal stem cells in treating patients with osteoarthritis of the knee: a meta-analysis[J]. Exp Ther Med, 2016, 12(5): 3390-3400.
[18] Luo YY, Sinkeviciute D, He Y, et al. The minor collagens in articular cartilage[J]. Protein Cell, 2017, 8(8): 560-572.
[19] Armiento AR, Alini M, Stoddart MJ. Articular fibrocartilage-Why does hyaline cartilage fail to repair[J]. Adv Drug Deliv Rev, 2019, 146: 289-305.
[20] 郑力铭, 马佳凯, 王威, 等. 关节软骨退变相关生物学标志物研究进展[J]. 中国中医骨伤科杂志, 2022, 30(3): 78-84.
[21] Cao ZL, Liu WG, Qu XY, et al. MiR-296-5p inhibits IL-1β-induced apoptosis and cartilage degradation in human chondrocytes by directly targeting TGF-β1/CTGF/p38MAPK pathway[J]. Cell Cycle, 2020, 19(12): 1443-1453.
[22] Zhang ZH, Zhao S, Sun ZF, et al. Enhancement of the therapeutic efficacy of mesenchymal stem cell-derived exosomes in osteoarthritis[J]. Cell Mol Biol Lett, 2023, 28(1): 75.
[23] Fu XR, Liu G, Halim A, et al. Mesenchymal stem cell migration and tissue repair[J]. Cells, 2019, 8(8): 784.
[24] Goldring MB, Tsuchimochi K, Ijiri K. The control of chondrogenesis[J]. J Cell Biochem, 2006, 97(1): 33-44.
[25] Caron MM, Emans PJ, Cremers A, et al. Hypertrophic differentiation during chondrogenic differentiation of progenitor cells is stimulated by BMP-2 but suppressed by BMP-7[J]. Osteoarthritis Cartilage, 2013, 21(4): 604-613.
[26] Chen YS, Chen Y, Zhang SJ, et al. Parathyroid hormone-induced bone marrow mesenchymal stem cell chondrogenic differentiation and its repair of articular cartilage injury in rabbits[J]. Med Sci Monit Basic Res, 2016, 22: 132-145.
[27] Jo CH, Lee YG, Shin WH, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial[J]. Stem Cells, 2014, 32(5): 1254-1266.
[28] Du X, Liu ZY, Tao XX, et al. Research progress on the pathogenesis of knee osteoarthritis[J]. Orthop Surg, 2023, 15(9): 2213-2224.
[29] 郑洁, 王瑞辉, 寇久社. 炎性反应在骨关节炎软骨退变中的作用[J]. 基础医学与临床,2014, 34(8): 1146-1149.
[30] 林璐璐, 石广霞, 屠建锋, 等. 膝骨关节炎疼痛机制研究进展[J]. 中国疼痛医学杂志,2022, 28(6): 454-459.
[31] Hamdalla HM, Ahmed RR, Galaly SR, et al. Assessment of the efficacy of bone marrow-derived mesenchymal stem cells against a monoiodoacetate-induced osteoarthritis model in wistar rats[J]. Stem Cells Int, 2022, 2022: 1900403.
[32] Vonk LA, Van Dooremalen SFJ, Liv N, et al. Mesenchymal stromal/stem cell-derived extracellular vesicles promote human cartilage regeneration in vitro[J]. Theranostics, 2018,8(4): 906-920.
[33] Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer[J]. Mol Cancer, 2023, 22(1): 138.
[34] Blanco FJ, Rego I, Ruiz-Romero C. The role of mitochondria in osteoarthritis[J]. Nat Rev Rheumatol, 2011, 7(3): 161-169.
[35] He YZ, Wu ZP, Xu LH, et al. The role of SIRT3-mediated mitochondrial homeostasis in osteoarthritis[J]. Cell Mol Life Sci, 2020, 77(19): 3729-3743.
[36] Wu CJ, Liu RX, Huan SW, et al. Senescent skeletal cells cross-talk with synovial cells plays a key role in the pathogenesis of osteoarthritis[J]. Arthritis Res Ther, 2022, 24(1): 59.
[37] Cetrullo S, D'Adamo S, Guidotti S, et al. Hydroxytyrosol prevents chondrocyte death under oxidative stress by inducing autophagy through sirtuin 1-dependent and-independent mechanisms[J]. Biochim Biophys Acta, 2016, 1860(6): 1181-1191.
[38] 刘恒, 刘超, 曹永平. 软骨细胞线粒体功能异常在关节软骨早期退变中的作用[J]. 中国矫形外科杂志, 2011, 19(8): 652-654.
[39] 李园琦, 林海, 罗红蓉, 等. 线粒体自噬与骨髓间充质干细胞成软骨分化的关联[J]. 中国组织工程研究, 2020, 24(31): 4954-4960.
[40] LIU L, LI YJ, CHEN G, et al. Crosstalk between mitochondrial biogenesis and mitophagy to maintain mitochondrial homeostasis[J]. J Biomed Sci, 2023, 30(1): 86.
[41] Wang R, Maimaitijuma T, Ma YY, et al. Mitochondrial transfer from bone-marrow-derived mesenchymal stromal cells to chondrocytes protects against cartilage degenerative mitochondrial dysfunction in rats chondrocytes[J]. Chin Med J, 2020, 134(2): 212-218.
[42] Yu MC, Wang D, Chen X, et al. BMSCs-derived mitochondria improve osteoarthritis by ameliorating mitochondrial dysfunction and promoting mitochondrial biogenesis in chondrocytes[J]. Stem Cell Rev Rep, 2022, 18(8): 3092-3111.
文章导航

/