中国医学论著

基于网络药理学与分子对接探究双花薄荷饮治疗糖尿病相关性牙周炎的作用机制*

  • 王子奇 ,
  • 陈青宇 ,
  • 安明 ,
  • 刘焱 ,
  • 张淑宁 ,
  • 赵瑞琦
展开
  • 1.内蒙古科技大学包头医学院口腔医学院,内蒙古包头 014040;
    2.内蒙古科技大学包头医学院药学院

收稿日期: 2024-08-07

  网络出版日期: 2025-08-06

基金资助

*大学生创新创业训练计划项目(S202410130011);花蕾计划(HLJH202324)

Exploring the mechanism of action of bifloral mint drink in the    treatment of diabetes mellitus with periodontitis associated    periodontitis based on network pharmacology and molecular docking

  • WANG Ziqi ,
  • CHEN Qingyu ,
  • AN Ming ,
  • LIU Yan ,
  • ZHANG Shuning ,
  • ZHAO Ruiqi
Expand
  • 1. School of Stomatology, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China;
    2. School of Pharmacy, Baotou Medical College, Inner Mongolia University of Science and Technology

Received date: 2024-08-07

  Online published: 2025-08-06

摘要

目的: 通过整合网络药理学与分子对接技术,阐明双花薄荷饮治疗糖尿病相关性牙周炎的分子调控路径,揭示其“多成分-多靶点-多通路”协同治疗特性。方法: 基于TCMSP数据库筛选核心成分,结合Swiss Target Prediction预测潜在靶点;通过OMIM、DisGeNET数据库获取糖尿病合并牙周炎相关靶标,经韦恩图分析确定核心靶点。利用Cluster Profiler R软件对靶点进行GO/KEGG富集分析,构建“成分-靶点-通路”网络,并通过Auto DockVina验证活性成分与关键靶点的分子对接亲和力。结果: 双花薄荷饮14种核心成分(如槲皮素、山柰酚)作用于74个关键靶点,调控20条核心通路(包括AGE-RAGE、IL-17、HIF-1信号通路)。分子对接显示槲皮素等成分与TNF-α结合自由能达-7.9 kcal/mol,提示强结合能力。GO分析表明靶点富集于炎症反应、免疫调节及糖代谢;KEGG通路涉及IL-17介导的骨代谢失衡及AGE-RAGE炎症级联。结论: 双花薄荷饮通过协同抑制IL-6、TNF-α、IL-1β调控AGE-RAGE/NF-κB轴减轻炎症损伤,干预IL-17通路改善骨吸收,并调节HIF-1介导的缺氧适应,体现中药多靶点整合作用机制。该研究为复方治疗糖尿病合并牙周炎提供分子依据,并支持其质量标准优化研究。

本文引用格式

王子奇 , 陈青宇 , 安明 , 刘焱 , 张淑宁 , 赵瑞琦 . 基于网络药理学与分子对接探究双花薄荷饮治疗糖尿病相关性牙周炎的作用机制*[J]. 包头医学院学报, 2025 , 41(7) : 37 -43 . DOI: 10.16833/j.cnki.jbmc.2025.07.007

Abstract

Objective: Through the integration of network pharmacology and molecular docking technology, the molecular regulation pathway and mechanism of action of Biflora mint drink in the treatment of diabetes-related periodontitis were elucidated, revealing its synergistic therapeutic properties of “multi-component-multi-target-multi-pathway”. Methods: Based on TCMSP database, 45 active core ingredients (e.g., quercetin, kaempferol) of the formula were screened, and the potential targets were predicted by Swiss Target Prediction. The targets related to diabetes mellitus combined with periodontitis were obtained from OMIM and DisGeNET databases, and 139 core targets were identified by the Venn diagram analysis. Cluster Profiler R software was used to analyze the GO/KEGG enrichment of the targets, and the “component-target-pathway” network was constructed, and the molecular docking affinity between the active ingredients and the key targets (e.g., TNF-α, IL-6) was verified by Auto DockVina. Results: The 14 core components of the Twoflower Mint Drink(e.g., quercetin, kaempferol) acted on 74 key targets and regulated 20 core pathways(including AGE-RAGE, IL-17, HIF-1 signaling pathway). The molecular docking showed that quercetin and other components had a binding free energy of -7.9 kcal/mol to TNF-α, suggesting a strong binding ability, and the GO analysis showed that the targets were enriched in inflammatory response, immune regulation and glucose metabolism. The KEGG pathway was involved in IL-17-mediated bone metabolism imbalance and AGE-RAGE inflammatory cascade. Conclusion: Double-flower mint drink can reduce inflammatory injury by synergistically inhibiting IL-6, TNF-α, IL-1β, regulating AGE-RAGE/NF-κB axis, intervening in IL-17 pathway to improve bone resorption, and regulating HIF-1-mediated adaptation to hypoxia, which embodies the multi-targeted and integrated mechanism of action of traditional Chinese medicine. This study provides a molecular basis for the treatment of diabetes mellitus combined with periodontitis by the compound formula and supports the optimization study of its quality standard.

参考文献

[1] 郑旭, 甘姗灵, 郭竹玲. 牙周基础治疗调节2型糖尿病患者代谢的研究进展[J]. 口腔医学, 2019, 39(2): 183-187.
[2] 张冬霞, 林江. 中性粒细胞在牙周炎和糖尿病双向关系中作用的研究进展[J]. 医学综述, 2019, 25(17): 3338-3343, 3349.
[3] 胡琮佼. 2型糖尿病与慢性牙周炎关联机制的研究进展[J]. 重庆医学, 2021, 50 (21): 3755-3759.
[4] 俞宁, 孙尚敏, 刘博, 等. RAGE基因多态性与2型糖尿病伴慢性牙周炎遗传易感性的相关研究[J]. 口腔医学, 2018, 38(1): 33-38.
[5] Adams DF. The American academy of periodontology[J]. J Periodontol, 1996, 67(2): 177-179.
[6] Chambrone L, Ramos UD, Reynolds MA. Infrared lasers for the treatment of moderate to severe periodontitis: an american academy of periodontology best evidence review[J]. J Periodontol, 2018, 89(7): 743-765.
[7] Johnson A, Kong FB, Miao S, et al. In-vitro antibacterial and anti-inflammatory effects of surfactin-loaded nanoparticles for periodontitis treatment[J]. Nanomaterials(Basel), 2021, 11(2): 356.
[8] 李冉, 胡素颖. 健脾祛痰化瘀法治疗糖尿病胃轻瘫[J]. 内蒙古中医药, 2021, 7(12): 73-74.
[9] 朱瑞雪, 郑仲华. 自拟知芍消渴丸治疗2型糖尿病的临床疗效[J]. 中医临床研究, 2020, 12(36): 51-53, 91.
[10] 凌宁, 李峥, 叶眉, 等. EMS系统与牙周翻瓣术治疗中重度慢性单根牙周炎及多根牙周炎的疗效比较[J]. 安徽医学, 2019, 40(9): 1017-1019.
[11] 杜丽君, 杜绍安, 刘广毅. 葛根芩连汤联合替硝唑治疗成人慢性牙周炎疗效及对患者牙周菌斑分布、炎症水平的影响[J]. 四川中医, 2021, 7(11): 186-189.
[12] 李随新, 刘琰. 基于文献、理论、临床多方证据的中医药防治口腔疾病的优势探讨[J].世界中西医结合杂志, 2020, 6(11): 2140-2142, 2146.
[13] 杨骐源, 魏雅莉, 黄睿洁. 中医药用于牙周炎防治的研究进展[J]. 西南国防医药, 2020, 30(5): 472-475.
[14] 杜瑞. 中药提取物及方剂治疗牙周炎的研究进展[J]. 光明中医, 2020, 35(24): 4012-4014.
[15] 赵梦丽, 闫大奇, 纪品川. 双花薄荷饮对2型糖尿病合并牙周炎的临床研究[J]. 河北医学, 2016, 22(10): 1699-1700, 1701.
[16] Xu X, Zhang WX, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability[J]. Int J Mol Sci, 2012, 13(6): 6964-6982.
[17] 杨珏,罗霄,刘芳,等.基于网络药理学和分子对接分析厚朴治疗消化性溃疡的作用机制[J]. 中国中药杂志, 2021, 46(17): 4522-4530.
[18] 曾玉, 韩瑞婷, 周庆伟. 基于网络药理学与分子对接技术探讨痰热清注射液治疗急性肺损伤的作用机制[J]. 中国中药杂志, 2021, 46(15): 3960-3969.
[19] Zhao JF, Fang Z, Zha ZA, et al. Quercetin inhibits cell viability,migration and invasion by regulating miR-16/HOXA10 axis in oral cancer[J]. Eur J Pha rmacol, 2019, 847: 11-18.
[20] Cheng WC, Huang RY, Chiang CY, et al. Ameliorative effect of quercetin on the destruction caused by experimental periodontitis in rats[J]. J Periodontal Res, 2010, 45(6): 788-795.
[21] 郭晓雨. 槲皮素对糖尿病牙周炎大鼠牙周组织的作用及其血清AGEs水平的影响[D]. 石家庄: 河北医科大学, 2020: 000908.
[22] 陈育华, 周克元, 袁汉尧. 山奈酚药效的研究进展[J]. 广东医学, 2010, 31(8): 1064-1066.
[23] Balli U, Cetinkaya BO, Keles GC, et al. Assessment of MMP-1, MMP-8 and TIMP-2 in experimental periodontitis treated with kaempferol[J]. J Periodontal Implant Sci, 2016, 46(2): 84-95.
[24] 王超, 魏翠婷, 李润, 等. 山柰酚通过改善肾小管上皮细胞的氧化应激与炎症反应减轻1型糖尿病小鼠肾损伤[J]. 解放军医学院学报, 2024, 45(3): 261-269.
[25] 林烨, 柳丽, 孙静, 等. 木犀草素防治糖尿病的作用机制研究进展[J]. 中药药理与临床, 2024, 40(7): 112-118.
[26] 赵溟昱, 时彬冕, 谢旭东, 等. 木犀草素在牙周炎防治中的研究进展[J]. 口腔医学, 2024, 44(2): 126-129.
[27] 马瑞敏,吕虹,刘杰,等.2型糖尿病患者骨代谢标志物变化的研究[J].标记免疫分析与临床,2021,28(3):365-369.
[28] 王元. 柚皮素防护2型糖尿病的作用及分子机制研究[D]. 成都: 电子科技大学, 2018: 8-53.
[29] 邱模昌, 蔡灵卿, 王芳, 等. β-胡萝卜素对高糖诱导的血管内皮细胞损伤的保护作用[J]. 南昌大学学报(医学版), 2014, 54(7): 24-28, 107.
[30] Patil CS, Kirkwood KL. p38 MAPK signaling in oral-related diseases[J]. J Dent Res, 2007, 86(9): 812-825.
[31] 李涛, 杨丽霞, 高博, 等. JAK/STAT信号通路干预糖尿病微血管并发症研究进展[J]. 中国临床药理学与治疗学, 2023, 28(12): 1415-1421.
[32] 贾冉, 李文建, 李易明, 等. 柚皮素对糖尿病肾病大鼠肾脏损伤的保护作用及机制探讨[J]. 现代中西医结合杂志, 2019, 28(19): 2072-2077.
[33] 王也, 张力木, 齐帅, 等. IL-6、IL-33、IL-10在牙周炎和类风湿关节炎中的表达和相关性分析[J]. 上海口腔医学, 2021, 7(5): 498-503.
[34] 刘静, 姜明霞. 炎症细胞因子IL-1β和IL-6在老年2型糖尿病合并骨质疏松患者血清中的表达及临床意义[J]. 中国老年学杂志, 2024, 44(3): 590-593.
[35] 姜梅, 徐俊仙, 翁庭静. 血清脂联素、超敏C-反应蛋白、白细胞介素6、肿瘤坏死因子-α联合检测在慢性牙周炎患者早期诊断中的应用价值[J]. 中国卫生检验杂志, 2020, 6(18): 2248-2251.
[36] 黄静文. 慢性牙周炎患者外周血T淋巴细胞中PD-1和PD-1L的表达量及其与炎症反应程度的相关性[J]. 海南医学院学报, 2017, 23(2): 262-265.
[37] Shokohi T, Aslani N, Ahangarkani F, et al. Candida infanticola and candida spencermartinsiae yeasts: possible emerging species in cancer patients[J]. Microb Pathog, 2018, 115: 353-357.
[38] Shen CY, Lu CH, Wu CH, et al. The development of Maillard reaction, and advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling inhibitors as novel therapeutic strategies for patients with AGE-related diseases[J]. Molecules, 2020, 25(23): 5591.
[39] Sui LH, Wang JL, Xiao ZX, et al. ROS-scavenging nanomaterials to treat periodontitis[J]. Front Chem, 2020, 8: 595530.
[40] 余海波. 转录因子HIF-1α与口腔疾病关系的研究进展[J]. 临床口腔医学杂志, 2018, 34(2): 125-127.
[41] Beringer A, Noack M, Miossec P. IL-17 in chronic inflammation: from discovery to targeting[J]. Trends Mol Med, 2016, 22(3): 230-241.
[42] Dutzan N, Abusleme L. T helper 17 cells as pathogenic drivers of periodontitis[M]. Cham: Springer International Publishing, 2019: 107-117.
[43] Bunte K, Beikler T. Th17 cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases[J]. Int J Mol Sci, 2019, 20(14): 3394.
[44] 董兰, 赵升, 李文川, 等. CCL20通过IL-17信号通路调控糖尿病肾病炎症进展[J].新医学, 2023, 54(6): 403-409.
文章导航

/