公共卫生与预防医学论著

熊果酸通过抑制PGE2调控HeLa细胞相关炎症因子的机制研究*

  • 李寒旭 ,
  • 吴俐虹 ,
  • 薛苗 ,
  • 高龙 ,
  • 包艳 ,
  • 戈娜
展开
  • 内蒙古科技大学包头医学院营养与食品卫生教研室,内蒙古包头 014040

收稿日期: 2024-08-26

  网络出版日期: 2025-08-06

基金资助

*内蒙古自然科学基金(2021BS08019);内蒙古自治区教育厅高等学校科学研究项目(NJZY21055);内蒙古自治区高校青年科技英才计划项目(NJYT22119);包头医学院创新团队发展计划(BYCXTD-11)

Study on the mechanism of ursolic acid regulating inflammatory    factors in HeLa cells by inhibiting PGE2

  • LI Hanxu ,
  • WU Lihong ,
  • XUE Miao ,
  • GAO Long ,
  • BAO Yan ,
  • GE Na
Expand
  • Department of Nutrition and Food Hygiene, Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China

Received date: 2024-08-26

  Online published: 2025-08-06

摘要

目的: 探讨熊果酸通过抑制前列腺素E2 (prostaglandin E2, PGE2)的合成进而对宫颈癌细胞(HeLa细胞)相关炎症因子表达的调控作用。方法: 选用HeLa细胞作为研究对象,将对数生长期细胞分为空白对照组、熊果酸组、环磷酰胺组、熊果酸+环磷酰胺组、熊果酸+EP2受体激动剂组,通过RT-PCR法和Elisa法检测HeLa细胞中白细胞介素-6(interleukin-6, IL-6)、IL-1β、肿瘤坏死因子α(tumornecrosis factor α, TNF-α)mRNA和蛋白的表达,Western blot法检测HeLa细胞Toll样受体4 (toll-like receptors,TLR4)/接头蛋白髓样分化因子88 (myeloid differentiation factor 88, MyD88)/NF-κB信号通路并选用信号通路激动剂验证该通路。结果: 与空白对照组相比,熊果酸组IL-6、IL-1β、TNF-α mRNA和蛋白的表达显著降低(P<0.05),加入PGE2激动剂后IL-6、IL-1β、TNF-α mRNA和蛋白的表达与熊果酸组相比显著增高(P<0.05);与空白对照组相比,熊果酸组TLR4、MyD88、NF-κB蛋白的表达显著降低(P<0.001),加入PGE2激动剂后TLR4、MyD88、NF-κB蛋白的表达与熊果酸组相比显著增高(P<0.001);与熊果酸组相比,加入TLR4激动剂(LPS)后TLR4、MyD88、NF-κB信号通路被显著激活(P<0.001)。结论: 熊果酸可以通过抑制TLR4/MyD88/NF-κB信号通路抑制PGE2的表达,从而调控与HeLa细胞发生发展有关的炎症因子的表达。

本文引用格式

李寒旭 , 吴俐虹 , 薛苗 , 高龙 , 包艳 , 戈娜 . 熊果酸通过抑制PGE2调控HeLa细胞相关炎症因子的机制研究*[J]. 包头医学院学报, 2025 , 41(7) : 7 -13 . DOI: 10.16833/j.cnki.jbmc.2025.07.002

Abstract

Objective: To explore the regulatory effect of ursolic acid on the expression of inflammatory factors associated with cervical cancer cells (HeLa) by inhibiting the synthesis of prostaglandin E2 (PGE2). Methods: HeLa cells were selected as the research subjects, and the logarithmic growth phase cells were divided into blank control group, ursolic acid group, cyclophosphamide group, ursolic acid+cyclophosphamide group, and ursolic acid+EP2 receptor agonist group. The mRNA and protein expressions of interleukin-6 (IL-6), IL-1β and tumor necrosis factor α (TNF-α) in HeLa cells were detected by RT-PCR and Elisa. The Toll-like receptors (TLR4)/ myeloid differentiation factor 88 (MyD88)/NF-κB signaling pathway in HeLa cells was detected by Western blot, and the signaling pathway agonist was used to verify the pathway. Results: Compared with the blank control group, the expression of IL-6, IL-1β and TNF-α mRNA and protein in ursolic acid group was significantly decreased (P<0.05). After adding PGE2 agonist, the expression of IL-6, IL-1β and TNF-α mRNA and protein was significantly higher than that in ursolic acid group (P<0.05). Compared with the blank control group, the expression of TLR4, MyD88 and NF-κB protein in ursolic acid group was significantly decreased (P<0.001). After adding PGE2 agonist, the expression of TLR4, MyD88 and NF-κB protein was significantly higher than that in ursolic acid group (P<0.001). Compared with the ursolic acid group, TLR4, MyD88, and NF-κB signaling pathways were significantly activated after the addition of TLR4 agonist (LPS) (P<0.001). Conclusion: Ursolic acid can inhibit the expression of PGE2 by inhibiting the TLR4/MyD88/NF-κB signaling pathway, thereby regulating the expression of inflammatory factors related to the development of HeLa cells.

参考文献

[1] El-Obeid A, Maashi Y, Alroshody R, et al. Herbal melanin modulates PGE2 and IL-6 gastroprotective markers through COX-2 and TLR4 signaling in the gastric cancer cell line AGS[J]. BMC Complement Med Ther, 2023, 23(1): 305.
[2] Kumar V, Bauer C, Stewart JH 4th. Targeting cGAS/STING signaling-mediated myeloid immune cell dysfunction in TIME[J]. J Biomed Sci, 2023, 30(1): 48.
[3] Deng S, Yuan P, Sun J. The role of NF-κB in carcinogenesis of cervical cancer: opportunities and challenges[J]. Mol Biol Rep, 2024, 51(1): 538.
[4] Namdeo P, Gidwani B, Tiwari S, et al. Therapeutic potential and novel formulations of ursolic acid and its derivatives: an updated review[J]. J Sci Food Agric, 2023, 103(9): 4275-4292.
[5] Khandia R, Munjal A. Interplay between inflammation and cancer[J]. Adv Protein Chem Struct Biol, 2020, 119: 199-245.
[6] Notas G, Panagiotopoulos A, Vamvoukaki R, et al. ERα36-GPER1 collaboration inhibits TLR4/NFκB-induced pro-inflammatory activity in breast cancer cells[J]. Int J Mol Sci, 2021, 22(14): 7603.
[7] Duan ZJ, Li Z, Wang ZY, et al. Chimeric antigen receptor macrophages activated through TLR4 or IFN-γ receptors suppress breast cancer growth by targeting VEGFR2[J]. Cancer Immunol Immunother, 2023, 72(10): 3243-3257.
[8] Li CY, Yang SQ, Ma HQ, et al. Influence of icariin on inflammation, apoptosis, invasion, and tumor immunity in cervical cancer by reducing the TLR4/MyD88/NF-κB and Wnt/β-catenin pathways[J]. Cancer Cell Int, 2021, 21(1): 206.
[9] Shao SY, Jia R, Zhao L, et al. Xiao-Chai-Hu-Tang ameliorates tumor growth in cancer comorbid depressive symptoms via modulating gut microbiota-mediated TLR4/MyD88/NF-κB signaling pathway[J]. Phytomedicine, 2021, 88: 153606.
[10] Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy[J]. Nat Rev Clin Oncol, 2022, 19(4): 237-253.
[11] Orange ST, Leslie J, Ross M, et al. The exercise IL-6 enigma in cancer[J]. Trends Endocrinol Metab, 2023, 34(11): 749-763.
[12] Hu YY, Zhong RH, Guo XJ, et al. Jinfeng pills ameliorate premature ovarian insufficiency induced by cyclophosphamide in rats and correlate to modulating IL-17A/IL-6 axis and MEK/ERK signals[J]. J Ethnopharmacol, 2023, 307: 116242.
[13] Wang SK, Han LQ, Li J, et al. Inflammatory molecules facilitate the development of docetaxel-resistant prostate cancer cells in vitro and in vivo[J]. Fundam Clin Pharmacol, 2022, 36(5): 837-849.
[14] Caronni N, Terza FL, Vittoria FM, et al. IL-1β+ macrophages fuel pathogenic inflammation in pancreatic cancer[J]. Nature, 2023, 623(7986): 415-422.
[15] Wu LJ, Jin YT, Zhao X, et al. Tumor aerobic glycolysis confers immune evasion through modulating sensitivity to T cell-mediated bystander killing via TNF-α[J]. Cell Metab, 2023, 35(9): 1580-1596.e9.
[16] Chen TL, Zhang XD, Zhu GL, et al. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro[J]. Medicine, 2020, 99(38): e22241.
[17] Park JE, Kang E, Han JS. HM-chromanone attenuates TNF-α-mediated inflammation and insulin resistance by controlling JNK activation and NF-κB pathway in 3T3-L1 adipocytes[J]. Eur J Pharmacol, 2022, 921: 174884.
[18] Tao HQ, Li WM, Zhang W, et al. Urolithin A suppresses RANKL-induced osteoclastogenesis and postmenopausal osteoporosis by, suppresses inflammation and downstream NF-κB activated pyroptosis pathways[J]. Pharmacol Res, 2021, 174: 105967.
文章导航

/