综述

肠道菌群在急性胰腺炎中的研究进展与挑战

  • 包甘柱 ,
  • 梁鲁 ,
  • 姚碧辉 ,
  • 宋磊 ,
  • 杨旭升
展开
  • 1.内蒙古医科大学包头临床医学院,内蒙古包头 014040;
    2.包头市中心医院
梁 鲁

收稿日期: 2024-07-08

  网络出版日期: 2025-06-12

Research progress and challenges of intestinal flora in acute pancreatitis

  • BAO Ganzhu ,
  • LIANG Lu ,
  • YAO Bihui ,
  • SONG Lei ,
  • YANG Xusheng
Expand
  • 1. Baotou Clinical Medical College of Inner Mongolia Medical University, Baotou 014040, China;
    2. Hepatobiliary, Pancreatic and Spleen Department of Baotou Central Hospital

Received date: 2024-07-08

  Online published: 2025-06-12

摘要

急性胰腺炎(acute pancreatitis, AP)是一种严重的消化系统疾病,其发生和发展与多种因素相关。近年来,肠道菌群失衡被认为是影响AP进程的重要因素。研究表明,AP患者的肠道菌群多样性减少、有益菌与致病菌比例失衡、特定菌群丰度的变化等,均通过影响肠道屏障功能和激发炎症反应影响AP进程。肠黏膜屏障在维持机体免疫防御系统完整性和正常生理功能方面起着至关重要的作用。肠道菌群失衡导致肠黏膜屏障功能受损,使肠道通透性增加,细菌发生易位,引发全身炎症反应综合征甚至多器官功能衰竭,加重胰腺炎病情,影响患者预后。此外,肠道菌群失衡还导致代谢产物的变化,如短链脂肪酸(short-chain fatty acids, SCFAs)和胆汁酸等,这些变化对胰腺功能和AP的发展有着重要影响。因此,维持肠道菌群平衡可能对AP的治疗和预后具有重要意义。笔者寻找对AP至关重要的特定菌株或参与AP的其他代谢产物,通过调节AP患者肠道菌群作为治疗AP的一种有效方法,深入研究肠道菌群与AP之间的相互作用,不仅有助于揭示AP的病理机制,还可能为AP的预防和治疗提供新的策略和方法。

本文引用格式

包甘柱 , 梁鲁 , 姚碧辉 , 宋磊 , 杨旭升 . 肠道菌群在急性胰腺炎中的研究进展与挑战[J]. 包头医学院学报, 2025 , 41(5) : 91 -96 . DOI: 10.16833/j.cnki.jbmc.2025.05.017

参考文献

[1] 李非, 曹锋. 中国急性胰腺炎诊治指南(2021)[J]. 中国实用外科杂志, 2021, 41(7): 739-746.
[2] 谢书海, 孙早喜. 肠道菌群与胰腺癌诊疗及发病机制的研究进展[J]. 胃肠病学和肝病学杂志, 2022, 31(9): 1071-1074.
[3] Li XY, He C, Zhu Y, et al. Role of gut microbiota on intestinal barrier function in acute pancreatitis[J]. World J Gastroenterol, 2020, 26(18): 2187-2193.
[4] Ye SJ, Si CL, Deng J, et al. Understanding the effects of metabolites on the gut microbiome and severe acute pancreatitis[J]. Biomed Res Int, 2021, 2021: 1516855.
[5] Patel BK, Patel KH, Bhatia M, et al. Gut microbiome in acute pancreatitis: a review based on current literature[J]. World J Gastroenterol, 2021, 27(30): 5019-5036.
[6] Zhang XM, Zhang ZY, Zhang CH, et al. Intestinal microbial community differs between acute pancreatitis patients and healthy volunteers[J]. Biomed Environ Sci, 2018, 31(1): 81-86.
[7] Li QR, Wang CY, Tang C, et al. Bacteremia in patients with acute pancreatitis as revealed by 16S ribosomal RNA gene-based techniques[J]. Crit Care Med, 2013, 41(8): 1938-1950.
[8] Tan C C, Ling ZX, Huang Y, et al. Dysbiosis of intestinal microbiota associated with inflammation involved in the progression of acute pancreatitis[J]. Pancreas, 2015, 44(6): 868-875.
[9] Zheng J Y, Lou LH, Fan JJ, et al. Commensal Escherichia coli aggravates acute necrotizing pancreatitis through targeting of intestinal epithelial cells[J]. Appl Environ Microbiol, 2019, 85(12): e00059-e00019.
[10] Li XY, He C, Li NS, et al. The interplay between the gut microbiota and NLRP3 activation affects the severity of acute pancreatitis in mice[J]. Gut Microbes, 2020, 11(6): 1774-1789.
[11] Mei QX, Fu Y, Huang ZH, et al. Intestinal TLR4 deletion exacerbates acute pancreatitis through gut microbiota dysbiosis and Paneth cells deficiency[J]. Gut Microbes, 2022, 14(1): 2112882.
[12] Lu WW, Chen X, Ni JL, et al. The role of gut microbiota in the pathogenesis and treatment of acute pancreatitis: a narrative review[J]. Ann Palliat Med, 2021, 10(3): 3445-3451.
[13] Yu SS, Xiong YY, Xu J, et al. Identification of dysfunctional gut microbiota through rectal swab in patients with different severity of acute pancreatitis[J]. Dig Dis Sci, 2020, 65(11): 3223-3237.
[14] Zhu Y, He C, Li XY, et al. Gut microbiota dysbiosis worsens the severity of acute pancreatitis in patients and mice[J]. J Gastroenterol, 2019, 54(4): 347-358.
[15] 李雪洋, 祝荫. 肠道菌群失衡在急性胰腺炎肠黏膜屏障损伤中的作用[J]. 中国实用内科杂志, 2021, 41(1): 14-17.
[16] Wu LM, Sankaran SJ, Plank LD, et al. Meta-analysis of gut barrier dysfunction in patients with acute pancreatitis[J]. Br J Surg, 2014, 101(13): 1644-1656.
[17] Zhang C, Li GQ, Lu TQ, et al. The interaction of microbiome and pancreas in acute pancreatitis[J]. Biomolecules, 2023, 14(1): 59.
[18] Watanabe T, Kudo M, Strober W. Immunopathogenesis of pancreatitis[J]. Mucosal Immunol, 2017, 10(2): 283-298.
[19] Zhu L, Zhang DY, Zhu H, et al. Berberine treatment increases Akkermansia in the gut and improves high-fat diet-induced atherosclerosis in Apoe -/- mice[J]. Atherosclerosis, 2018, 268: 117-126.
[20] Chen J, Huang CL, Wang JJ, et al. Dysbiosis of intestinal microbiota and decrease in paneth cell antimicrobial peptide level during acute necrotizing pancreatitis in rats[J]. PLoS One, 2017, 12(4): e0176583.
[21] 王恺. 免疫微生态肠内营养方案对重症急性胰腺炎患者肠道菌群的影响[J]. 大医生, 2024, 9(4): 133-136.
[22] Tian L, Zhou XQ, Jiang WD, et al. Sodium butyrate improved intestinal immune function associated with NF-κB and p38MAPK signalling pathways in young grass carp (Ctenopharyngodon idella)[J]. Fish Shellfish Immunol, 2017, 66: 548-563.
[23] Deng WS. Arpin contributes to bacterial translocation and development of severe acute pancreatitis[J]. World J Gastroenterol, 2015, 21(14): 4293.
[24] 吕彦青, 李嘉杰, 刘坤禹, 等. 急性胰腺炎患者肠道菌群变化及益生菌的应用[J]. 临床肝胆病杂志, 2023, 39(12): 2970-2977.
[25] Capurso G, Zerboni G, Signoretti M, et al. Role of the gut barrier in acute pancreatitis[J]. J Clin Gastroenterol, 2012, 46 Suppl: S46-S51.
[26] 郭海阁. 肠道菌群变化情况与急性胰腺炎易位感染的相关性[J]. 河南医学研究, 2023, 9(18): 3312-3315.
[27] Parada Venegas D, De La Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases[J]. Front Immunol, 2019, 10: 277.
[28] Cong J, Zhou P, Zhang RY. Intestinal microbiota-derived short chain fatty acids in host health and disease[J]. Nutrients, 2022, 14(9): 1977.
[29] Zhou D, Pan Q, Xin F, et al. Sodium butyrate attenuates high-fat diet-induced steatohepatitis in mice by improving gut microbiota and gastrointestinal barrier[J]. World J Gastroenterol, 2017, 3(1): 60-75.
[30] Van Den Berg FF, Van Dalen D, Hyoju SK, et al. Western-type diet influences mortality from necrotising pancreatitis and demonstrates a central role for butyrate[J]. Gut, 2021, 70(5): 915-927.
[31] Zhou RL, Wu QY, Yang ZH, et al. The role of the gut microbiome in the development of acute pancreatitis[J]. Int J Mol Sci, 2024, 25(2): 1159.
[32] Wan YD, Zhu RX, Pan XT, et al. Bile acid supplementation improves murine pancreatitis in association with the gut microbiota[J]. Front Physiol, 2020, 11: 650.
[33] Pan LL, Li BB, Pan XH, et al. Gut microbiota in pancreatic diseases: possible new therapeutic strategies[J]. Acta Pharmacol Sin, 2021, 42(7): 1027-1039.
[34] Pagliari D, Saviano A, Newton EE, et al. Gut microbiota-immune system crosstalk and pancreatic disorders[J]. Mediators Inflamm, 2018, 2018: 7946431.
[35] Zhou Q, Tao XF, Xia SL, et al. T lymphocytes: a promising immunotherapeutic target for pancreatitis and pancreatic cancer[J]. Front Oncol, 2020, 10: 382.
[36] 徐跃元, 杨上文, 潘俊娣. 重症急性胰腺炎患者肠道菌群和代谢产物的变化特征及其与病情的相关性[J]. 中国微生态学杂志, 2022, 34(11): 1334-1337.
[37] 肖樱艳, 崔艳, 李艳. 肠道菌群与IL-6/gp130信号通路在急性胰腺炎发病机制中的研究进展[J]. 检验医学, 2021, 36(5): 565-568.
[38] Lei YY, Tang L, Liu S, et al. Parabacteroides produces acetate to alleviate heparanase-exacerbated acute pancreatitis through reducing neutrophil infiltration[J]. Microbiome, 2021, 9(1): 115.
[39] Xu FM, Yang CM, Tang MC, et al. The role of gut microbiota and genetic susceptibility in the pathogenesis of pancreatitis[J].Gut Liver, 2022, 16(5): 686-696.
文章导航

/