目的:通过网络药理学和分子对接技术探讨珍宝丸“异病同治”治疗缺血性脑卒中和冠心病等心脑血管疾病的作用机制。方法:通过TCMSP、OMIM、GeneCards、DisGeNET数据库筛选珍宝丸治疗冠心病和缺血性脑卒中的潜在靶点,并通过STRING数据库进行PPI分析,使用Cytoscape 3.7.2软件对PPI网络进行拓扑分析,筛选出关键靶点。利用DAVID数据库进行GO和KEGG功能富集分析。通过构建“活性成分-靶点-通路”网络筛选出核心活性成分和核心靶点后,利用AutoDock Vina进行分子对接预测。结果:筛选后得到珍宝丸治疗冠心病和缺血性脑卒中的潜在靶点有74个;对PPI网络分析后得到10个关键靶点,包括TNF、IL-6、ALB、IL-1B、ICAM-1、TLR4、CXCL8、MMP9、TGFB1、PTGS2;GO和KEGG富集分析表明,与冠心病和缺血性脑卒中相关且排序靠前的通路有AGE-RAGE信号通路、脂质和动脉粥样硬化、流体剪切力与动脉粥样硬化等,主要与炎症反应、基因表达负调控、血管生成的正调控等生物过程有关。核心活性成分(2R)-7-羟基-5-甲氧基-N-乙酰色胺-黄酮类化合物-4-1、β-谷甾醇、谷甾醇、豆甾醇、甘草素与KDR、NOS2、PIK3CA、PPARG、PTGS2结合稳定。结论:基于网络药理学分析和分子对接的方法发现珍宝丸可以通过多靶点、多途径治疗冠心病和缺血性脑卒中,并且可能通过抗炎、抗氧化应激等作用,发挥“异病同治”效果。
Objective: To investigate the mechanism of action of Zhenbao Pill in the treatment of ischemic stroke and coronary heart disease through network pharmacology and molecular docking technology. Methods: The potential targets of Zhenbao Pill in the treatment of coronary heart disease and ischemic stroke were screened by TCMSP, OMIM, GeneCards and DisGeNET databases, and PPI analysis was performed by STRING database. Cytoscape 3.7.2 software was used to perform topological analysis of PPI network to screen out key targets. GO and KEGG functional enrichment analysis was performed using the DAVID database. After screening out the core active ingredients and core targets by constructing the 'active ingredient-target-pathway' network, AutoDock Vina was used for molecular docking prediction. Results: There were 74 potential targets of Zhenbao Pills in the treatment of coronary heart disease and ischemic stroke. Ten key targets were obtained after PPI network analysis, including TNF, IL-6, ALB, IL-1B, ICAM-1, TLR4, CXCL8, MMP9, TGFB1 and PTGS2. GO and KEGG enrichment analysis showed that the top-ranked pathways related to coronary heart disease and ischemic stroke were AGE-RAGE signaling pathway, lipid and atherosclerosis, fluid shear stress and atherosclerosis, which were mainly related to inflammatory response, negative regulation of gene expression, positive regulation of angiogenesis and other biological processes. The core active components (2R)-7-hydroxy-5-methoxy-N-acetyltryptamine-flavonoid-4-1, β-sitosterol, sitosterol, stigmasterol and liquiritigenin were stable with KDR, NOS2, PIK3CA, PPARG and PTGS2. Conclusion: Based on network pharmacology analysis and molecular docking, it is found that Zhenbao Pill can treat coronary heart disease and ischemic stroke through multiple targets and multiple pathways, and may play a role in 'treating different diseases with the same treatment' through anti-inflammatory and anti-oxidative stress.
[1] 中华人民共和国卫生部药典委员会.中华人民共和国卫生部药品标准. 蒙药分册[M]. 北京: 中国医药科技出版社, 1998: 160.
[2] 都格尔, 麻春杰, 齐红梅. 蒙药额尔敦-乌日勒的研究进展[J]. 中国民族医药杂志, 2014,20(1): 43-46.
[3] 咏梅. 蒙医心刺痛·血性心刺痛的诊疗方案[J]. 中国民族医药杂志, 2010, 16(7): 32-33.
[4] 苏宝音, 巴图那松. 心刺痛的治疗[J]. 中国蒙医药(蒙), 2013(4): 33-35.
[5] 徐甜, 樊姝宁, 邓楠, 等. 基于分子网络研究四逆散抗抑郁症作用的潜在生物学机制[J]. 药物评价研究, 2019, 42(9): 1723-1729.
[6] Maes M, Nikiforov NG, Plaimas K, et al. New drug targets to prevent death due to stroke: a review based on results of protein-protein interaction network, enrichment, and annotation analyses[J]. Int J Mol Sci, 2021, 22(22): 12108.
[7] Paar M, Rossmann C, Nusshold C, et al. Anticoagulant action of low, physiologic, and high albumin levels in whole blood[J]. PLoS One, 2017, 12(8): e0182997.
[8] Arslan F, De Kleijn DP, Timmers L, et al. Bridging innate immunity and myocardial ischemia/reperfusion injury: the search for therapeutic targets[J]. Curr Pharm Des, 2008,14(12): 1205-1216.
[9] 李超, 麻春杰. 额尔敦-乌日勒预处理对大鼠心肌缺血再灌注损伤的防护作用[J]. 中国民族医药杂志, 2023, 29(3): 30-33.
[10] 朱洋洋, 刘梦, 杨道迪, 等. 急性缺血性脑卒中早期脑损伤病人脑脊液ICAM-1、MLKL表达及临床意义[J]. 中西医结合心脑血管病杂志, 2024, 10(3): 561-563.
[11] Senatus LM, Schmidt AM. The AGE-RAGE axis: implications for age-associated arterial diseases[J]. Front Genet, 2017, 8: 187.
[12] Cheng HX, Zhong W, Wang L, et al. Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches[J]. Biomedecine Pharmacother, 2023, 158: 114198.
[13] 龚燚婷, 李彦萍, 程亚茹, 等. 基于HIF-1信号通路研究芪参益气滴丸治疗心肌缺血的分子机制[J]. 中国中药杂志, 2021, 46(15): 3949-3959.
[14] 严宁, 杨春霞, 马娟, 等. β-谷甾醇对大鼠心肌缺血再灌注损伤和ERK1/2信号通路的影响[J]. 心血管病学进展, 2020, 41(3): 321-325.
[15] Liang QL, Yang J, He JJ, et al. Stigmasterol alleviates cerebral ischemia/reperfusion injury by attenuating inflammation and improving antioxidant defenses in rats[J]. Biosci Rep, 2020, 40(4): BSR20192133.
[16] Sun JD, Li XM, Liu JL, et al. Stigmasterol exerts neuro-protective effect against ischemic/reperfusion injury through reduction of oxidative stress and inactivation of autophagy[J]. Neuropsychiatr Dis Treat, 2019, 15: 2991-3001.
[17] Wang DM, Tian LM, Yan W, et al. Liquiritigenin modulates myocardial ischemia-reperfusion injury (MIRI) mediated by miR-185-5p/CDK6 axis[J/OL]. (2023-10-23)[2024-6-14]. https://doi.org/10.23736/S0026-4806.23.08893-6.
[18] Shyu KG, Chang CC, Wang BW, et al. Increased expression of angiopoietin-2 and IE2 receptor in a rat model of myocardial ischaemia/reperfusion[J]. Clin Sci, 2003, 105(3): 287-294.
[19] Waltenberger J, Kranz A, Beyer M. Neovascularization in the human heart is associated with expression of VEGF-A and its receptors FLT-1 (VEGFR-1) and KDR (VEGFR-2). Results from cardiomyopexy in ischemic cardiomyopathy[J]. Angiogenesis, 1999, 3(4): 345-351.
[20] Forster C, Clark HB, Ross ME, et al. Inducible nitric oxide synthase expression in human cerebral infarcts[J]. Acta Neuropathol, 1999, 97(3): 215-220.
[21] Wei HW, Xue QJ, Sun L, et al. BRD4 inhibition protects against myocardial ischemia/reperfusion injury by suppressing inflammation and oxidative stress through the PI3K/AKT signaling pathway[J]. J Cardiovasc Pharmacol, 2021, 78(6): 839-846.
[22] Zhang CD, Gai JL, Fan XH, et al. Exploring the molecular mechanism of Nux Vomi-ca in treating ischemic stroke using network pharmacology and molecular docking methods[J]. Medicine, 2023, 102(16): e33625.
[23] Zhou YQ, Zhou HX, Hua L, et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis[J]. Free Radic Biol Med, 2021, 171: 55-68.