目的:研究老年性高血压合并脑梗死的发生、发展与外周血miRNA-31水平的相关性。方法:2022年7月至2023年4月期间就诊于包头医学院第一附属医院的患者中,收集单纯高血压患者100例(A组),高血压合并脑梗死患者100例(B组)作为研究组,来本院体检的健康人100例(C组)作为对照组。脑梗死组依据神经功能缺损程度分为轻度卒中组、中度卒中组、重度卒中组。利用qPCR荧光定量法检测各组外周血miRNA-31的表达含量。结果:各组的危险因素的分析中,脑梗死组的血脂水平高于高血压组和对照组,其差异均有统计学意义(P<0.01)。脑梗死组(轻、中、重度卒中组)外周血miRNA-31的水平[(3.81±0.865)、(5.006±1.745)、(8.217±1.755)]要高于高血压组(1.52±0.792)和对照组(1.275±1.034)(均P<0.05)。患者ADL评分(代表的脑梗死的严重程度)与miRNA-31呈正相关(r=0.878,P<0.01),miRNA-31与NHISS评分(代表的脑梗死的程度)呈正相关(r=0.657,P<0.01)。外周血miRNA-31诊断高血压合并脑梗死的曲线下面积为0.979,灵敏度、特异度的值分别为95.3%、91.7%。结论:老年性高血压合并脑梗死的miRNA-31水平较其他组增高,可作为评估高血压患者脑梗死风险的参考指标。
Objective: To study the correlation between the occurrence, development of hypertension in elderly patients complicated with cerebral infarction and peripheral blood miRNA-31 levels. Methods: From July 2022 to April 2023, 100 patients with simple hypertension (Group A) and 100 hypertension patients with complicated with cerebral infarction (Group B) were collected from the First Affiliated Hospital of Baotou Medical College as the experimental group, and 100 normal individuals who underwent physical examination at the same hospital (Group C) were selected as the control group. Patients in the cerebral infarction group (Group B) was divided into mild stroke group, moderate stroke group, and severe stroke group based on the degree of neurological dysfunction. Expression levels of miRNA-31 in peripheral blood of each group were detected using qPCR fluorescence quantification method. Results: The risk factors analyzing results showed that the blood lipid levels in the Group B were higher than those in the group A and the control group, and the differences were statistically significant (P<0.01). The levels of peripheral blood miRNA-31 in the group B (mild, moderate, and severe stroke groups) were higher than those in the group A and control group [(3.81±0.865), (5.006±1.745), (8.217±1.755), (1.52±0.792), and (1.275±1.034)] (P<0.05). The severity of cerebral infarction represented by the patient's ADL score was positively correlated with miRNA-31(r=0.878, P<0.01), while miRNA-31 was positively correlated with the severity of cerebral infarction represented by the NHISS score (r=0.657, P<0.01). The area under the curve of miRNA-31 in peripheral blood for diagnosing hypertension complicated with cerebral infarction is 0.979, with sensitivity and specificity values of 95.3% and 91.7%, respectively. Conclusion: The miRNA-31 level in elderly hypertensive patients complicated with cerebral infarction is higher than that in other groups, and can be used as a reference indicator for evaluating the risk of cerebral infarction in hypertensive patients.
[1] 张会怡, 耿翠, 潘颖华, 等. miR-195、miR-130a在脑梗死患者外周血中的表达及意义[J]. 微量元素与健康研究, 2019, 36(2): 3-5.
[2] 张真. 急性脑梗死患者外周血脑特异性miR-128b、miR-137和miR-153的表达变化研究[D]. 长沙: 中南大学, 2014.
[3] Rink C, Khanna S. MicroRNA in ischemic stroke etiology and pathology[J]. Physiological Genomics, 2011, 43(10): 521-528.
[4] Cui HJ, Yang AL, Zhou HJ, et al. Thrombin-induced miRNA-24-1-5p upregulation promotes angiogenesis by targeting prolyl hydroxylase domain 1 in intracerebral hemorrhagic rats[J]. J Neurosurg, 2020, 134(5): 1515-1526.
[5] Subramanian A, Weiss D, Nyhan K, et al. Circulating miRNAs in the first trimester and pregnancy complications: a systematic review[J]. Epigenetics, 2023, 18(1): 2152615.
[6] 李彦岑, 龙志鹏, 张毅, 等. 急性脑梗死病人血清miR-132和Ang-1水平变化及其与病情进展的关系[J]. 中西医结合心脑血管病杂志, 2023, 21(22): 4226-4230.
[7] 李胜楠, 关雪莲, 龚光清, 等. MicroRNA在脑梗死危险因素中的研究进展[J]. 微量元素与健康研究, 2017, 34(3): 76-78.
[8] Xi TY, Jin F, Zhu Y, et al. miR-27a-3p protects against blood-brain barrier disruption and brain injury after intracerebral hemorrhage by targeting endothelial aquaporin-11[J]. J Biol Chem, 2018, 293(52): 20041-20050.
[9] Wang XY, Chen SS, Ni JS, et al. miRNA-3473b contributes to neuroinflammation following cerebral ischemia[J]. Cell Death Dis, 2018, 9(1): 11.
[10] Hu LT, Wang BY, Fan YH, et al. Exosomal miR-23b from bone marrow mesenchymal stem cells alleviates oxidative stress and pyroptosis after intracerebral hemorrhage[J]. Neural Regen Res, 2023, 18(3): 560-567.
[11] Liu X, Feng Z, Du L, et al. The potential role of MicroRNA-124 in cerebral ischemia injury[J]. Int J Mol Sci, 2019, 21(1): 120.
[12] Lu G, Wong MS, Xiong MZQ, et al. Circulating MicroRNAs in delayed cerebral infarction after aneurysmal subarachnoid hemorrhage[J]. J Am Heart Assoc, 2017, 6(4): e005363-e005363.
[13] Bernstein DL, Zuluaga-Ramirez V, Gajghate S, et al. miR-98 reduces endothelial dysfunction by protecting blood–brain barrier (BBB) and improves neurological outcomes in mouse ischemia/reperfusion stroke model[J]. J Cereb Blood Flow Metab, 2020, 40(10): 1953-1965.
[14] 李文婷, 邹伟, 曹琳, 等. miR-145靶向抑制MMP-9表达对大鼠脑动脉血管平滑肌细胞增殖和迁移的影响[J]. 山东医药, 2017, 57(26): 25-28.
[15] 唐旭军, 于晓钧, 莫伟强, 等. 2型糖尿病合并急性脑梗死患者血清miR-223-3p、miR-134-5p水平变化及其意义[J]. 山东医药, 2023, 63(32): 54-57.