临床医学论著

血管源性脑白质高信号患者外周血PBMC中m6A甲基化调节酶的表达分析*

  • 孟晨曦 ,
  • 孙洪英 ,
  • 张佳 ,
  • 毛戬 ,
  • 杨阳 ,
  • 策乐木格
展开
  • 1.内蒙古科技大学包头医学院, 内蒙古包头 014000;
    2.内蒙古科技大学包头医学院第一附属医院神经内科
孙洪英

收稿日期: 2024-01-03

  网络出版日期: 2025-02-24

基金资助

* 内蒙古自治区科技创新引导项目(CXYD2022BT04);包头医学院第一附属医院人才类项目(YFYRC-LCYC2023005)

Expression analysis of m6A methylation regulatory enzymes in peripheral blood PBMC of patients with vasogenic white matter hyperintensity

  • MENG Chenxi ,
  • SUN Hongying ,
  • ZHANG Jia ,
  • MAO Jian ,
  • YANG Yang ,
  • CE Lemuge
Expand
  • 1. Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China;
    2. Department of Neurology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology

Received date: 2024-01-03

  Online published: 2025-02-24

摘要

目的:探究血管源性脑白质高信号患者外周血单个核细胞中的m6A甲基化调节酶及脑小血管病相关基因的表达情况,为血管源性脑白质高信号的发病机制提供理论依据。方法:选取2021年10月至2022年10月就诊于内蒙古科技大学包头医学院第一附属医院神经内科的脑白质高信号患者和健康体检者各12例。采用实时荧光定量PCR(RT-qPCR)技术分析m6A甲基化调节酶及脑小血管相关基因的mRNA表达情况,蛋白印迹法(Western blot)检测METTL3、ILF3的蛋白表达情况。结果:与对照组相比,METTL3、KAA1429及ILF3的mRNA呈低水平表达(P<0.05);与对照组相比,METTL3和ILF3的蛋白呈低水平表达(P<0.05)。与对照组相比,METTL14、DGCR8、FTO、WTAP、RBM15、YTHDC1、ATF3和ERBIN的mRNA表达水平差异无统计学意义(P>0.05)。结论:甲基化转移酶METTL3和ILF3可能介导了血管源性脑白质高信号的发病。

本文引用格式

孟晨曦 , 孙洪英 , 张佳 , 毛戬 , 杨阳 , 策乐木格 . 血管源性脑白质高信号患者外周血PBMC中m6A甲基化调节酶的表达分析*[J]. 包头医学院学报, 2025 , 41(1) : 74 -77 . DOI: 10.16833/j.cnki.jbmc.2025.01.013

Abstract

Objective: To explore the expression of m6A methylation regulatory enzymes and cerebral small vessel-disease related genes in peripheral blood mononuclear cells of patients with vasogenic white matter hyperintensity, and to provide a theoretical basis for the pathogenesis of vasogenic white matter hyperintensity. Methods: From October 2021 to October 2022, 12 patients with white matter hyperintensity and 12 healthy subjects were selected from the Department of Neurology, the First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology. Real-time fluorescence quantitative PCR (RT-qPCR) was used to analyze the mRNA expression of m6A methylation regulatory enzymes and brain small vessel-related genes. Western blot was used to detect the protein expression of METTL3 and ILF3. Results: Compared with the control group, the mRNA expression levels of METTL3, KAA1429 and ILF3 were lower(P<0.05). Compared with the control group, the protein expression levels of METTL3 and ILF3 were lower(P<0.05). Compared with the control group, there was no significant difference in the mRNA expression levels of METTL14, DGCR8, FTO, WTAP, RBM15, YTHDC1, ATF3 and ERBIN(P>0.05). Conclusion: Methyltransferases METTL3 and ILF3 may be involved in the pathogenesis of vasogenic white matter hyperintensity.

参考文献

[1] 胡文立, 杨磊, 李譞婷, 等. 中国脑小血管病诊治专家共识2021[J]. 中国卒中杂志, 2021, 16(7): 716-726.
[2] Zhou Y, Kong Y, Fan W, et al. Principles of RNA methylation and their implications for biology and medicine[J]. Biomed Pharmacother, 2020, 131: 110731.
[3] Vrakas CN, Herman AB, Ray M, et al. RNA stability protein ILF3 mediates cytokine-induced angiogenesis[J]. FASEB J, 2019, 33(3): 3304-3316.
[4] Nyunt T, Britton M, Wanichthanarak K, et al. Mitochondrial oxidative stress-induced transcript variants of ATF3 mediate lipotoxic brain microvascular injury[J]. Free Radic Biol Med, 2019, 143: 25-46.
[5] Jin X, Li B, Zhao Y, et al. Erbin plays a critical role in human umbilical vein endothelial cell migration and tubular structure formation via the Smad1/5 pathway[J]. Cell Biochem, 2019, 120(3): 4654-4664.
[6] Yang Q, Wei X, Deng B, et al. Cerebral small vessel disease alters neurovascular unit regulation of microcirculation integrity involved in vascular cognitive impairment[J]. Neurobiol Dis, 2022, 170: 105750.
[7] Ali HF, Fast L, Khalil A, et al. White matter hyperintensities are an independent predictor of cognitive decline 3 years followingfirst-ever stroke-results from the PROSCIS-B study[J]. Neurol. 2023: 270(3): 1637-1646.
[8] Wadhwa R, Wen W, Frankland A, et al. White matter hyperintensities in young individuals with bipolar disorder or at high genetic risk[J]. Affect Disord, 2019, 245: 228-236.
[9] Sinani O, Dadouli K, Ntellas P, et al. Association between white matter lesions and Parkinson's disease: an impact on Postural/Gait difficulty phenotype and cognitive performance[J]. Neurol Res, 2022, 44(12): 1122-1131.
[10] Yang L, Shu J, Yan A, et al. White matter hyperintensities-related cortical changes and correlation with mild behavioralimpairment[J]. Adv Med Sci, 2022, 67(2): 241-249.
[11] Mirza SS, Saeed U, Ramirez J, et al. Effects of white matter hyperintensities, neuropsychiatric symptoms,and cognition on activities of daily living: differences between Alzheimer's disease and dementiawith Lewy bodies[J]. Alzheimers Dement(Amst), 2022, 14(1): e12306.
[12] Karvelas N, Elahi FM. White matter hyperintensities: complex predictor of complex outcomes[J]. J Am Heart Assoc, 2023, 12(13): e030351
[13] Zhang F, Ran Y, Tahir M, et al. Regulation of N6-methyladenosine (m6A) RNA methylation in microglia-mediated inflammation and ischemic stroke[J]. Front Cell Neurosci, 2022, 16: 955222.
[14] Li Y, Qi D, Zhu B, et al. Analysis of m6A RNA methylation-related genes in liver hepatocellular carcinoma and their correlation with survival[J]. Int J Mol Sci, 2021, 22(3): 1474.
[15] Chen J, Wei X, Yi X, et al. RNA modification by m6A methylation in cardiovascular disease[J]. Oxid Med Cell Longev, 2021, 2021: 8813909.
[16] Lv X, Liu X, Zhao M, et al. RNA methylation in systemic lupus erythematosus[J].Front Cell Dev Biol, 2021, 9: 696559.
[17] McMillan M, Gomez N, Hsieh C, et al. RNA methylation influences TDP43 binding and disease pathogenesis in models of amyotrophic lateral sclerosis and frontotemporal dementia[J]. Mol Cell, 2023, 83(2): 219-236.
文章导航

/