基础医学论著

miR-15a、miR-466b-3p、miR-328-3p和miR-144-5p对硝酸钕诱导小于胎龄儿绒毛膜细胞凋亡的调控作用*

  • 张宏波 ,
  • 郭婧 ,
  • 张琦 ,
  • 霍宇婷 ,
  • 程霞霞 ,
  • 邰大鹏 ,
  • 乔瑞
展开
  • 1.包头医学院,内蒙古包头 014040;
    2.包头市国药北方医院;
    3.包头市昆都仑区医院
乔 瑞,邰大鹏

收稿日期: 2023-12-15

  网络出版日期: 2024-11-19

基金资助

国家自然科学基金项目(82060600);内蒙古自治区卫生健康科研计划项目(20221391)

Regulatory effects of miR-15a, miR-466b-3p, miR-328-3p,    and miR-144-5p on neodymium nitrate induced proliferation and    apoptosis of chorionic villus in small for gestational age infants

  • ZHANG Hongbo ,
  • GUO Jing ,
  • ZHANG Qi ,
  • HUO Yuting ,
  • CHENG Xiaxia ,
  • TAI Dapeng ,
  • QIAO Rui
Expand
  • 1. Baotou Medical College, Baotou, 014040, China;
    2. SINOPHARM North Hospital of Baotou;
    3. Kundulun District Hospital

Received date: 2023-12-15

  Online published: 2024-11-19

摘要

目的: 探究硝酸钕[Nd(NO3)3]对小于胎龄儿(small for gestational age,SGA)绒毛膜细胞凋亡及标志性microRNA表达变化的影响,揭示钕致SGA的潜在分子作用机制。方法: 选取人绒毛膜细胞系(JEG-3),通过CCK-8确定Nd(NO3)3最佳染毒剂量、时间;流式细胞术检测细胞凋亡情况;提取对照组(0 μg/mL)、实验组[低、中、高剂量组(0.2 、2、20 μg/mL)]细胞的miRNA进行qPCR,检测miR-15a、miR-466b-3p、miR-328-3p、miR-144-5p的表达水平。转染miR-15a、miR-144-5p抑制剂后检测细胞转染情况,再次进行CCK-8、流式细胞术验证细胞凋亡情况。结果: CCK-8结果显示,中剂量组细胞存活率下降至75.53%,流式细胞检测同样发现在中剂量组出现了更多凋亡。对JEG-3细胞染毒24 h提取细胞miRNA检测其miR-15a、miR-466b-3p、miR-328-3p、miR-144-5p表达水平,与对照组相比均出现不同程度上调。JEG-3细胞系转染上述microRNA抑制剂后,CCK-8中剂量组miR-144-5p、miR-15a抑制剂转染组其存活率由原75.53%回升至76.71%、83.03%,而凋亡水平则由原18.70%下降至18.44%、15.34%。结论: 硝酸钕对JEG-3毒性影响呈现剂量依赖性,miR-15a、miR-466b-3p、miR-328-3p、miR-144-5p表达水平出现上调,激活下游信号通路调节细胞凋亡,对硝酸钕引起的细胞应激反应具有重要影响,为探究SGA的分子作用机制提供了新的研究方向。

本文引用格式

张宏波 , 郭婧 , 张琦 , 霍宇婷 , 程霞霞 , 邰大鹏 , 乔瑞 . miR-15a、miR-466b-3p、miR-328-3p和miR-144-5p对硝酸钕诱导小于胎龄儿绒毛膜细胞凋亡的调控作用*[J]. 包头医学院学报, 2024 , 40(10) : 6 -11 . DOI: 10.16833/j.cnki.jbmc.2024.10.002

Abstract

Objective: To investigate the effects of neodymium nitrate [Nd(NO3)3] on chorionic cell apoptosis and the changes of microRNA expression in small for gestational age (SGA) infants, aiming to explore the molecular mechanisms of neodymium inducing SGA. Methods: The human trophoblast cell line (JEG-3) was selected. The optimal dose and time of Nd(NO3)3 exposure were determined by CCK-8 assay. Apoptosis was measured using flow cytometry. MicroRNA (miRNA) was extracted from the control group (0 μg/mL) and experimental group treated with low, medium, and high doses (0.2, 2, 20 μg/mL) of Nd(NO3)3. The expression levels of miR-15a, miR-466b-3p, miR-328-3p, and miR-144-5p were measured by qPCR. After transfection with miR-15a and miR-144-5p inhibitors, transfection efficiency was evaluated, and CCK-8 and flow cytometry assays were repeated to confirm their effects on apoptosis. Results: The CCK-8 assay showed that cell viability in the medium-dose group decreased to 75.53%, and Flow cytometry also indicated increased apoptosis in this group. After 24 hours of Nd(NO3)3 exposure, qPCR analysis showed that miR-15a, miR-466b-3p, miR-328-3p, and miR-144-5p were upregulated compared to the control group. After JEG-3 cell line transfected with the above microRNA inhibitors, the survival rate of miR-144-5p and miR-15a inhibitor transfected group in CCK-8 medium-dose group increased from 75.53% to 76.71% and 83.03%, respectively, while the apoptosis level decreased from 18.70% to 18.44% and 15.34% respectively. Conclusion: The toxic effect of [Nd(NO3)3] on cells is dose-dependent. With increased expression levels of miR-15a, miR-466b-3p, miR-328-3p, and miR-144-5p, downstream signaling pathway is activated and apoptosis mechanism is regulated, which plays an important role in cell stress response induced by (Nd(NO3)3). This study provides a new research direction for exploring the molecular mechanism of SGA.

参考文献

[1] Cai H, Yao Y, Cai J. Design of examination management system for engineering management[J]. IOP Conf Ser Earth Environ Sci, 2020, 474(7): 72047.
[2] Campos-Roldán CA, Jones DJ, Rozière J, et al. Platinum-rare earth alloy electrocatalysts for the oxygen reduction reaction: a brief overview[J]. Chem Cat Chem, 2022, 14(19): e202200334.
[3] Brouziotis AA, Giarra A, Libralato G, et al. Toxicity of rare earth elements: an overview on human health impact[J]. Front Environ Sci, 2022, 10: 948041.
[4] Zemlyanova M, Jia JX, Song W, et al. Biochemical indicators of the lipid metabolism in workers involved in the processing of raw materials and production of rare metal products[J]. Hygiene Sanitation, 2023, 102(5): 433-438.
[5] Squadrone S, Brizio P, Stella C, et al. Rare earth elements in marine and terrestrial matrices of Northwestern Italy: implications for food safety and human health[J]. Sci Total Environ, 2019, 660: 1383-1391.
[6] Liu YY, Wu MY, Liu BQ, et al. Association of prenatal exposure to rare earth elements with newborn mitochondrial DNA content: results from a birth cohort study[J]. Environ Int, 2020, 143: 105863.
[7] Brouziotis AA, Giarra A, Libralato G,et al. Toxicity of rare earth elements: an overview on human health impact[J]. Front Environ Sci, 2022, 10: 948041.
[8] Zhang T, Gao X, Luo X, et al. The effects of long-term exposure to low doses of cadmium on the health of the next generation of mice[J]. Chem Biol Interact, 2019, 312: 108792.
[9] Yi SJ, Xiong YW, Zhu HL, et al. Environmental cadmium exposure during pregnancy causes diabetes-like phenotypes in mouse offspring: association with oxidative stress in the fetal liver[J]. Sci Total Environ, 2021, 777: 146006.
[10] Wang SR, Bu N, Yun YD, et al. RNA-Seq analysis of testes from mice exposed to neodymium oxide[J]. Toxics, 2023, 11(12): 952.
[11] Rogaczewski P, Janiak M, Borysewicz K, et al. Clinical significancy of WNT pathway inhibition in various cancers[J]. J Educ Health Sport, 2022, 12(11): 183-191.
[12] Asta D, Xin L, Du YH, et al. Clinical features and perinatal outcomes of SGA neonates from pregnancies complicated by diabetes: a multicentre retrospective study[J]. Italian J Gynaecol Obstet, 2023, 35(1): 47.
[13] Choi SK, Henry A, Hilder L, et al. Adverse perinatal outcomes in immigrants: a ten-year population-based observational study and assessment of growth charts[J]. Paediatr Perinat Epidemiol, 2019, 33(6): 421-432.
[14] Bhamidipaty-Pelosi S, Fox J, Greer RM, et al. The risks of recurrent small for gestational age infants at term is dependent on the number of previous affected births[J]. Am J Obstet Gynecol, 2021, 225(4): 415.e1-415.e9.
[15] Wang BM, Li N. Effect of the Wnt/β-catenin signaling pathway on apoptosis, migration, and invasion of transplanted hepatocellular carcinoma cells after transcatheter arterial chemoembolization in rats[J]. J Cell Biochem, 2018, 119(5): 4050-4060.
[16] Xu YF, Liu J, Wang J, et al. MiR-186 promotes the apoptosis of glioma U87 cells by down-regulating the expression of Smad6[J]. Eur Rev Med Pharmacol Sci, 2020, 24(14): 7681-7689.
[17] Wang CJ, Li BB, Tan YJ, et al. MicroRNA-31/184 is involved in transforming growth factor-β-induced apoptosis in A549 human alveolar adenocarcinoma cells[J]. Life Sci, 2020, 242: 117205.
[18] Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis[J]. Mol Cell, 2007, 26(5): 745-752.
[19] Kim WJ, Beardsley DI, Adamson AW, et al. The monofunctional alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine triggers apoptosis through p53-dependent and -independent pathways[J]. Toxicol Appl Pharmacol, 2005, 202(1): 84-98.
[20] Baba AB, Rah B, Bhat GR, et al. Transforming growth factor-beta (TGF-β) signaling in cancer-A betrayal within[J]. Front Pharmacol, 2022, 13: 791272.
[21] Bottaini M, Banfi G, Lomdarai G, et al. Circulating miRNAs as diagnostic and prognostic biomarkers in common solid tumors: focus on lung, breast, prostate cancers, and osteosarcoma[J]. J Clin Med, 2019, 8(10): 1661.
[22] Ning WW, Wu B, Chen YJ, et al. Role of microRNAs regulating trophoblast cell function in the pathogenesis of pre-eclampsia[J]. Exp Ther Med, 2023, 25(1): 1-8.
[23] Awamleh Z, Han VK. Potential pathophysiological role of microRNA 193b-5p in human placentae from pregnancies complicated by preeclampsia and intrauterine growth restriction[J]. Mol Biol Rep, 2020, 47(9): 6531-6544.
[24] Yue X, Lan FM, Xia TY. Hypoxic glioma cell-secreted exosomal miR-301a activates Wnt/β-catenin signaling and promotes radiation resistance by targeting TCEAL7[J]. Mol Ther, 2019, 27(11): 1939-1949.
文章导航

/