综述

微塑料毒效应研究进展*

  • 王蕊 ,
  • 蒲晓晓 ,
  • 赵云利
展开
  • 蚌埠医学院公共卫生学院,安徽蚌埠 233030
赵云利

收稿日期: 2022-12-16

  网络出版日期: 2023-10-25

基金资助

* 国家自然科学基金项目(21707002);安徽省高校自然科学基金(KJ2021A0737);蚌埠医学自然科学孵育项目(2020byfy002);蚌埠医学院研究生科研创新计划项目(Byycxz22034)

Research progress on toxic effects of microplastics

  • WANG Rui ,
  • PU Xiaoxiao ,
  • ZHAO Yunli
Expand
  • School of Public Health, Bengbu Medical College, Bengbu, 233030, China

Received date: 2022-12-16

  Online published: 2023-10-25

摘要

微塑料是目前备受全球学者关注的环境污染物。因此本文对微塑料的毒效应和作用机制进行了综述,并指出了未来的研究方向。微塑料可穿过细胞膜直接进入细胞或组织器官,对消化系统、生殖系统产生损伤;纳米级别的微塑料甚至可以进入细胞核中,对DNA产生损伤、诱导细胞自噬与凋亡,产生氧化损伤等。目前针对微塑料毒性效应的研究主要采用实验室制备的材料,未来还应对老化状态下及自然环境中的微塑料进行深入研究,以全面了解微塑料可能对生物体产生的损害。

本文引用格式

王蕊 , 蒲晓晓 , 赵云利 . 微塑料毒效应研究进展*[J]. 包头医学院学报, 2023 , 39(10) : 84 -90 . DOI: 10.16833/j.cnki.jbmc.2023.10.017

Abstract

Microplastics are environmental pollutants that have attracted worldwide attention. In this paper, the toxic effects and mechanism of microplastics were reviewed, and the future research direction was pointed out. Microplastics can penetrate cell membrane directly into cells or tissues and organs, causing damage to digestive system and reproductive system. Nanoscale microplastics can even enter the nucleus, cause DNA damage, induce autophagy and apoptosis of cells, and produce oxidative damage. Current studies on the toxic effects of microplastics mainly use materials prepared in the laboratory. Further studies should be conducted on microplastics in the aging state and natural environment in order to fully understand the possible damage to organisms caused by microplastics.

参考文献

[1] Andrady AL, Neal MA. Applications and societal benefits of plastics[J]. Philos Trans R Soc Lond B Biol Sci, 2009,364(1526):1977-1984.
[2] Jambeck JR, Geyer R, Wilcox C, et al. Marine pollution. Plastic waste inputs from land into the ocean[J]. Science, 2015,347(6223):768-771.
[3] Wu PF, Huang JS, Zheng YL, et al. Environmental occurrences, fate, and impacts of microplastics[J]. Ecotoxicol Environ Saf, 2019,184:109612.
[4] Hirt N, Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics: a review of the literature[J]. Part Fibre Toxicol, 2020,17(1):57.
[5] Karbalaei S, Hanachi P, Walker TR, et al. Occurrence, sources, human health impacts and mitigation of microplastic pollution[J]. Environ Sci Pollut Res Int, 2018,25(36):36046-36063.
[6] Choi D, Bang J, Kim T, et al. In vitro chemical and physical toxicities of polystyrene microfragments in human-derived cells[J]. J Hazard Mater, 2020,400:123308.
[7] Yu CW, Wu YC, Liao VHC. Early developmental nanoplastics exposure disturbs circadian rhythms associated with stress resistance decline and modulated by DAF-16 and PRDX-2 in C. elegans[J]. J Hazard Mater, 2022,423(Pt A):127091.
[8] Huang WT, Yin H, Yang YY, et al. Influence of the co-exposure of microplastics and tetrabromobisphenol A on human gut: simulation in vitro with human cell Caco-2 and gut microbiota[J]. Sci Total Environ, 2021,778:146264.
[9] Gummi, Fasern, Kunststoffe, et al. Plastics - the Facts 2017[EB/OL]. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2017/, 2017.
[10] Frias JPGL, Nash R. Microplastics: Finding a consensus on the definition[J]. Mar Pollut Bull, 2019,138:145-147.
[11] Sharma S, Chatterjee S. Microplastic pollution, a threat to marine ecosystem and human health: a short review[J]. Environ Sci Pollut Res Int, 2017,24(27):21530-21547.
[12] Schwabl P, Köppel S, Königshofer P, et al. Detection of various microplastics in human stool: a prospective case series[J]. Ann Intern Med, 2019,171(7):453-457.
[13] Walczak AP, Hendriksen PJM, Woutersen RA, et al. Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats[J]. J Nanopart Res, 2015,17(5):231.
[14] Espinosa C, Garcia Beltran JM, Esteban MA, et al. In vitro effects of virgin microplastics on fish head-kidney leucocyte activities[J]. Environ Pollut, 2018,235:30-38.
[15] Goodman KE, Hare JT, Khamis ZI, et al. Exposure of human lung cells to polystyrene microplastics significantly retards cell proliferation and triggers morphological changes[J]. Chem Res Toxicol, 2021,34(4):1069-1081.
[16] Matthews S, Mai L, Jeong C B, et al. Key mechanisms of micro- and nanoplastic (MNP) toxicity across taxonomic groups[J]. Comp Biochem Physiol C Toxicol Pharmacol, 2021,247:109056.
[17] Li ZK, Zhu SX, Liu Q, et al. Polystyrene microplastics cause cardiac fibrosis by activating Wnt/β-catenin signaling pathway and promoting cardiomyocyte apoptosis in rats[J]. Environ Pollut, 2020,265(Pt A):115025.
[18] Araujo APDC, Gomes AR, Malafaia G. Hepatotoxicity of pristine polyethylene microplastics in neotropical Physalaemus cuvieri tadpoles (fitzinger, 1826)[J]. J Hazard Mater, 2020,386:121992.
[19] Yu YJ, Chen HB, Hua X, et al. Polystyrene microplastics (PS-MPs) toxicity induced oxidative stress and intestinal injury in nematode Caenorhabditis elegans[J]. Sci Total Environ, 2020,726:138679.
[20] Lei LL, Wu SY, Lu SB, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Sci Total Environ, 2018,619-620:1-8.
[21] Gu W Q, Liu S, Chen L, et al. Single-cell RNA sequencing reveals size-dependent effects of polystyrene microplastics on immune and secretory cell populations from zebrafish intestines[J]. Environ Sci Technol, 2020,54(6):3417-3427.
[22] Liu ZQ, Yu P, Cai MQ, et al. Effects of microplastics on the innate immunity and intestinal microflora of juvenile Eriocheir sinensis[J]. Sci Total Environ, 2019,685:836-846.
[23] Xia T, Kovochich M, Liong M, et al. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways[J]. ACS Nano, 2008,2(1):85-96.
[24] Chiu HW, Xia T, Lee YH, et al. Cationic polystyrene nanospheres induce autophagic cell death through the induction of endoplasmic Reticulum stress[J]. Nanoscale, 2015,7(2):736-746.
[25] Hwang J, Choi D, Han S, et al. Potential toxicity of polystyrene microplastic particles[J]. Sci Rep, 2020,10(1):7391.
[26] Wu SJ, Wu M, Tian DC, et al. Effects of polystyrene microbeads on cytotoxicity and transcriptomic profiles in human Caco-2 cells[J]. Environ Toxicol, 2020,35(4):495-506.
[27] Shang Y, Wang SY, Jin YY, et al. Polystyrene nanoparticles induced neurodevelopmental toxicity in Caenorhabditis elegans through regulation of dpy-5 and rol-6[J]. Ecotoxicol Environ Saf, 2021,222:112523.
[28] Yu CW, Luk TC, Liao VHC. Long-term nanoplastics exposure results in multi and trans-generational reproduction decline associated with germline toxicity and epigenetic regulation in Caenorhabditis elegans[J]. J Hazard Mater, 2021,412:125173.
[29] Bojic S, Falco MM, Stojkovic P, et al. Platform to study intracellular polystyrene nanoplastic pollution and clinical outcomes[J]. Stem Cells, 2020,38(10):1321-1325.
[30] Li YJ, Yang GX, Wang J, et al. Microplastics increase the accumulation of phenanthrene in the ovaries of marine medaka (Oryzias melastigma) and its transgenerational toxicity[J]. J Hazard Mater, 2022,424(Pt D):127754.
[31] Liu ZQ, Cai MQ, Wu DL, et al. Effects of nanoplastics at predicted environmental concentration on Daphnia pulex after exposure through multiple generations[J]. Environ Pollut, 2020,256:113506.
[32] Jimenez-Guri E, Roberts KE, Garcia FC, et al. Transgenerational effects on development following microplastic exposure in Drosophila melanogaster[J]. Peer J, 2021,9:e11369.
[33] Sun SM, Jin YT, Luo PH, et al. Polystyrene microplastics induced male reproductive toxicity and transgenerational effects in freshwater prawn[J]. Sci Total Environ, 2022,842:156820.
[34] Wang J, Zheng MY, Lu L, et al. Adaptation of life-history traits and trade-offs in marine medaka (Oryzias melastigma) after whole life-cycle exposure to polystyrene microplastics[J]. J Hazard Mater, 2021,414:125537.
[35] Zhang XL, Zhao JY, Gan TT, et al. Aging relieves the promotion effects of polyamide microplastics on parental transfer and developmental toxicity of TDCIPP to zebrafish offspring[J]. J Hazard Mater, 2022,437:129409.
[36] Liu HL, Tian LJ, Wang ST, et al. Size-dependent transgenerational toxicity induced by nanoplastics in nematode Caenorhabditis elegans[J]. Sci Total Environ, 2021,790:148217.
[37] Chen HB, Hua X, Li H, et al. Transgenerational neurotoxicity of polystyrene microplastics induced by oxidative stress in Caenorhabditis elegans[J]. Chemosphere, 2021,272:129642.
[38] Frias JPGL, Sobral P, Ferreira AM. Organic pollutants in microplastics from two beaches of the Portuguese coast[J]. Mar Pollut Bull, 2010,60(11):1988-1992.
[39] Yilimulati M, Wang LF, Ma XL, et al. Adsorption of ciprofloxacin to functionalized nano-sized polystyrene plastic: kinetics, thermochemistry and toxicity[J]. Sci Total Environ, 2021,750:142370.
[40] Li W J, Lo H S, Wong H M, et al. Heavy metals contamination of sedimentary microplastics in Hong Kong[J]. Mar Pollut Bull, 2020,153:110977.
[41] Dong SS, Qu M, Rui Q, et al. Combinational effect of titanium dioxide nanoparticles and nanopolystyrene particles at environmentally relevant concentrations on nematode Caenorhabditis elegans[J]. Ecotoxicol Environ Saf, 2018,161:444-450.
[42] Wen B, Jin SR, Chen ZZ, et al. Single and combined effects of microplastics and cadmium on the cadmium accumulation, antioxidant defence and innate immunity of the Discus fish (Symphysodon aequifasciatus)[J]. Environ Pollut, 2018,243(Pt A):462-471.
[43] Magri D, Sanchez-Moreno P, Caputo G, et al. Laser ablation as a versatile tool to mimic polyethylene terephthalate nanoplastic pollutants: characterization and toxicology assessment[J]. ACS Nano, 2018,12(8):7690-7700.
[44] Kim HM, Lee DK, Long NP, et al. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans[J]. Environ Pollut, 2019,246:578-586.
[45] Chen HB, Hua X, Yang Y, et al. Chronic exposure to UV-aged microplastics induces neurotoxicity by affecting dopamine, glutamate, and serotonin neurotransmission in Caenorhabditis elegans[J]. J Hazard Mater, 2021,419:126482.
[46] Wang ST, Liu HL, Qu M, et al. Response of tyramine and glutamate related signals to nanoplastic exposure in Caenorhabditis elegans[J]. Ecotoxicol Environ Saf, 2021,217:112239.
[47] Liu HL, Wang DY. Intestinal mitochondrial unfolded protein response induced by nanoplastic particles in Caenorhabditis elegans[J]. Chemosphere, 2021,267:128917.
[48] He YX, Li J, Chen JC, et al. Cytotoxic effects of polystyrene nanoplastics with different surface functionalization on human HepG2 cells[J]. Sci Total Environ, 2020,723:138180.
[49] Shao HM, Han ZY, Krasteva N, et al. Identification of signaling cascade in the insulin signaling pathway in response to nanopolystyrene particles[J]. Nanotoxicology, 2019,13(2):174-188.
[50] Sun LM, Liao K, Wang DY. Comparison of transgenerational reproductive toxicity induced by pristine and amino modified nanoplastics in Caenorhabditis elegans[J]. Sci Total Environ, 2021,768:144362.
文章导航

/