结直肠癌(colorectal cancer,CRC)作为世界第三大恶性肿瘤,给社会造成了极大的健康经济负担。近些年来,由免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)发挥主导作用的免疫治疗取得了较大进展。ICIs对微卫星高度不稳定性(microsatellite instability-high, MSI-H)或错配修复缺陷(deficiency of mismatch repair, dMMR)转移性结直肠癌(metastatic colorectal cancer,mCRC)患者效果显著,这为mCRC患者提供了新的治疗方向。即使ICIs在dMMR/MSI-H亚型的mCRC患者中取得了显著的治疗效果,但就总体CRC人群而言,能够从ICIs中获益的仅占少部分,表明存在原发性免疫耐药;此外,初始ICIs治疗获益的患者在治疗过程中可能出现继发性免疫耐药,最终可能导致疾病进展。肿瘤组织与肿瘤微环境(tumor microenvironment, TME)相互依存,微环境中各种分子和细胞均对肿瘤的发生发展及免疫治疗产生复杂的影响,其中TME 的组成变化可能与免疫耐药有着密切关系。因此,本文阐述免疫耐药与肿瘤微环境的相关机制,旨在总结和寻找CRC免疫耐药的可能机制。
As the third malignant tumor in the world, colorectal cancer has caused a great burden on the society. In recent years, immunotherapy has been dominated by immune checkpoint inhibitors (ICIs). ICIs are highly effective in patients with microsatellite instability-high (MSI-H) or deficiency of mismatch repair (dMMR) metastatic colorectal cancer (mCRC), which provide new ways to treat advanced colorectal cancer. Although ICIs achieve significant therapeutic effects in mCRC patients with dMMR/MSI-H subtypes, only a few members of CRC patients can benefit from ICIs due to primary immune resistance. Besides, patients who benefit from initial ICIs may develop the secondary therapeutic resistance during the treatment process, which may ultimately lead to disease progression. However, tumor tissue is interdependent with the tumor microenvironment (TME), and various molecules and cells in the microenvironment have complex effects on the development of the tumor and immunotherapy. Among them, the composition change of TME may have a close relationship to immune resistance. Therefore, the mechanisms between immune resistance and the tumor microenvironment were elaborated to summarize and explore the possible mechanisms of immune resistance in colorectal cancer.
[1] 王康,贾军梅. dMMR/MSI-H型转移性结直肠癌患者免疫检查点抑制剂免疫耐药可能相关机制的研究进展[J].山东医药,2020,60(17): 4.
[2] Sharma P,Allison J. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential[J].Cell,2015,161(2): 205-214.
[3] Andrews LP,Yano H,Vignali D. Inhibitory receptors and ligands beyond PD-1,PD-L1 and CTLA-4: breakthroughs or backups[J].Nat Immunol,2019,20(11): 1425-1434.
[4] Jr LAD,Shiu KK,Kim TW,et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised,open-label,phase 3 study[J].Lancet Oncol,2022,23(5): 659-670.
[5] Anaricin T. PD-1 blockade in tumors with mismatch-repair deficiency[J].Colon Rectum,2015,9(3): 182-184.
[6] Riaz N,Morris L,Havel JJ,et al. The role of neoantigens in response to immune checkpoint blockade[J].Int Immunol,2016,28(8): 411-419.
[7] Giannakis M,Grasso C,Wells D,et al. Genetic mechanisms of immune evasion in colorectal cancer[J].Cancer Discov,2018,8(6): 730-749.
[8] Overman MJ,Mcdermott R,Leach JL,et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label,multicentre,phase 2 study[J].Lancet Oncol,2017,18(9): 1182-1191.
[9] Schrock AB,Ouyang C,Sandhu J,et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer[J].Ann Oncol,2019,30(7): 1096-1103.
[10] 郭渊先,杜文龙,王佳,等. 结直肠癌免疫逃逸机制的研究进展[J].中国现代医学杂志,2021,031(011): 25-30.
[11] 张飞,王雅婧,李合,等. 肿瘤浸润淋巴细胞相关因子和PD-L1在dMMR结直肠癌中的表达及临床意义[J].中国组织化学与细胞化学杂志,2022(001): 031.
[12] 樊慧婷,林洪生. 髓源抑制性细胞与恶性肿瘤的研究进展[J].现代肿瘤医学,2020,28(12): 5.
[13] Steggerda SM,Bennett MK,Chen J,et al. Inhibition of arginase by CB-1158 blocks myeloid cell-mediated immune suppression in the tumor microenvironment[J].J Immunother Cancer,2017,5(1): 101.
[14] Deng J,Li JN,Sarde A,et al. Hypoxia-induced vista promotes the suppressive function of myeloid-derived suppressor cells in the tumor microenvironment[J].Cancer Immunol Res,2019,7(7): 1079-1090.
[15] Tachibana OM. Valproic acid attenuates CCR2-dependent tumor infiltration of monocytic myeloid-derived suppressor cells,limiting tumor progression[J].Oncoimmunology,2020,9(1): 1734268.
[16] Laviron M,Boissonnas A. Ontogeny of tumor-associated macrophages[J].Frontiers Immunol,2019,10: 1799.
[17] Takeya M,Komohara Y. Role of tumor-associated macrophages in human malignancies: friend or foe[J].Pathol Inter,2016,66(9): 491-505.
[18] Yang L,Zhang Y. Tumor-associated macrophages,potential targets for cancer treatment[J].Biomark Res,2017,5: 25.
[19] Perry CJ,Munoz-Rojas AR,Meeth KM,et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity[J].J Exp Med,2018,215(3): 877-893.
[20] Spranger S,Dai D,Horton B,et al. Tumor-residing batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy[J].Cancer Cell,2017,31(5): 711-723.
[21] Serra S,Vaisitti T,Audrito V,et al. Adenosine signaling mediates hypoxic responses in the chronic lymphocytic leukemia microenvironment[J].Blood Adv,2016,1(1): 47-61.
[22] Vijayan D,Young A,Teng M,et al. Targeting immunosuppressive adenosine in cancer[J].Nat Rev Cancer,2017,17(12): 709-724.
[23] Young A,Ngiow S,Barkauskas D,et al. Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses[J].Cancer Cell,2016,30(3): 391-403.
[24] Tang YA,Chen YF,Bao Y,et al. Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer[J].Proc Natl Acad Sci USA,2018,115(26): E5990-E5999.
[25] 张童童,于溯洋,赵士彭. 结直肠癌PD-1/PD-L1阻断治疗的耐药研究现状[J].中华结直肠疾病电子杂志,2021,10(2): 205-210.
[26] Hsu JM,Xia W,Hsu YH,et al. STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion[J].Nat Commun,2018,9(1): 1908.
[27] Vasaikar S,Huang C,Wang XJ,et al. Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities[J].Cell,2019,177(4): 1035-1049.
[28] Bracci L,Schiavoni G,Sistigu A,et al. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer[J].Cell Death Differ,2014,21(1): 15-25.
[29] Wang ZB,Till B,Gao QL. Chemotherapeutic agent-mediated elimination of myeloid-derived suppressor cells[J].Oncoimmunology,2017,6(7): e1331807.
[30] 杨雅凝,杨路,王燕. 肺癌免疫治疗耐药机制及应对策略[J].中国肺癌杂志,2021,24(2): 112-123.
[31] 李刚霞,李冰,胡昌华. 2010年美国食品药品监督管理局批准的生物制品及解析[J].中国药学杂志,2011,46(24): 4.