综述

铅对肠道屏障及肠道菌群影响的研究进展*

  • 胡明月 ,
  • 关明杰
展开
  • 内蒙古科技大学包头医学院公共卫生学院,内蒙古包头 014040
关明杰

收稿日期: 2022-12-05

  网络出版日期: 2023-08-28

基金资助

* 内蒙古自然科学基金(Z19SQ2-2019MS08204);国家自然科学基金(00116116)

Research progress on the effect of lead on intestinal barrier and intestinal microflora

  • HU Mingyue ,
  • GUAN Mingjie
Expand
  • School of Public Health,Baotou Medical College,Baotou 014040,China

Received date: 2022-12-05

  Online published: 2023-08-28

摘要

铅是一种可以通过呼吸道、消化道和皮肤接触等途径进入体内并蓄积产生毒性的非必需金属,可以对人体的多个系统造成损害,如肾脏、肝脏、神经、血液、生殖、胃肠道等,对肠道菌群也会产生影响。儿童时期正是快速生长发育阶段,是建立肠道微生物群的关键时期,因此儿童受铅暴露的毒性影响更加明显。本文综述了铅对不同动物模型及人的肠道屏障、菌群影响的相关研究成果,并重点强调了铅对儿童肠道的毒性作用。此外,本文分析了改善肠道屏障及菌群的研究,进一步总结了目前通过益生菌防治铅中毒可行和有效的策略。

本文引用格式

胡明月 , 关明杰 . 铅对肠道屏障及肠道菌群影响的研究进展*[J]. 包头医学院学报, 2023 , 39(8) : 90 -96 . DOI: 10.16833/j.cnki.jbmc.2023.08.018

参考文献

[1] Charkiewicz AE, Backstrand JR. Lead toxicity and pollution in Poland [J]. Int J Environ Res Public Health, 2020,17(12):4385.
[2] Obeng-Gyasi E. Sources of lead exposure in various countries [J]. Rev Environ Health, 2019,34(1):25-34.
[3] Mayans L. Lead poisoning in Children [J]. Am Fam Physician, 2019,100(1):24-30.
[4] Fan J, Zhao L, Kan J, et al. Uptake of vegetable and soft drink affected transformation and bioaccessibility of lead in gastrointestinal track exposed to lead-contaminated soil particles [J]. Ecotoxicol Environ Saf, 2020,194(C):110411.
[5] Mitra P, Sharma S, Purohit P, et al. Clinical and molecular aspects of lead toxicity: An update [J]. Crit Rev Clin Lab Sci, 2017,54(7-8):506-528.
[6] Gao C, Fu Q, Su B, et al. Transcriptomic profling revealed the signatures of intestinal barrier alteration and pathogen entry in turbot (Scophthalmus maximus) following Vibrio anguillarum challenge [J]. Dev Comp Immunol, 2016,65:159-168.
[7] Gao B, Chi L, Mahbub R, et al. Multi-omics reveals that lead exposure disturbs gut microbiome development, key metabolites, and metabolic pathways [J]. Chem Res Toxicol, 2017,30(4):996-1005.
[8] France MM, Turner JR. The mucosal barrier at a glance [J]. J Cell Sci, 2017,130(2):307-314.
[9] Gentile CL, Weir TL. Weir. The gut microbiota at the intersection of diet and human health [J]. Science, 2018,362(6416):776-780.
[10] Zimmermann M, Zimmermann-Kogadeeva M, Wegmann R, et al. Separating host and microbiome contributions to drug pharmacokinetics and toxicity [J]. Science, 2019,363(6427):eaat9931.
[11] Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity [J]. Curr Opin Microbiol, 2017,35:8-15.
[12] Yu L, Yu Y, Yin R, et al. Dose-dependent effects of lead induced gut injuries: An in vitro and in vivo study [J]. Chemosphere, 2021,266:129130.
[13] Zhai Q, Qu D, Feng S, et al. Oral supplementation of lead-intolerant intestinal microbes protects against lead (Pb) toxicity in mice [J]. Front Microbiol, 2020,10:3161.
[14] Chu C, Murdock MH, Jing D, et al. The microbiota regulate neuronal function and fear extinction learning [J]. Nature, 2019,574(7779):543-548.
[15] Gershon MD, Margolis KG. The gut, its microbiome, and the brain: connections and communications [J]. J Clin Invest, 2021,131(18):e143768.
[16] Gao J, Xu K, Liu H, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism [J]. Front Cell Infect Microbiol, 2018,8:13.
[17] Luo X, Huo X, Zhang Y, et al. Increased intestinal permeability with elevated peripheral blood endotoxin and inflammatory indices for e-waste lead exposure in children [J]. Chemosphere, 2021,279:130862.
[18] Chen M, Huang H, Zhou P, et al. Oral phosphatidylcholine improves intestinal barrier function in drug-induced liver injury in rats [J]. Gastroenterol Res Pract, 2019,2019:8723460.
[19] Schoultz I, KeitaÅV. The intestinal barrier and current techniques for the assessment of gut permeability [J]. Cells, 2020,9(8):1909.
[20] Stevens BR, Goel R, Seungbum K, et al. Increased human intestinal barrier permeability plasma biomarkers zonulin and FABP2 correlated with plasma LPS and altered gut microbiome in anxiety or depression [J]. Gut, 2018,67(8):1555-1557.
[21] Farhana A, Khan YS. Biochemistry, Lipopolysaccharide [J].In:StatPearls. Treasure Island (FL): StatPearls Publishing, 2022,21(4). PMID: 32119301.
[22] Cavaillon JM. Exotoxins and endotoxins: Inducers of inflammatory cytokines [J]. Toxicon, 2018,149:45-53.
[23] Kondo Y, Ledderose C, Slubowski CJ, et al. Frontline Science: Escherichia coli use LPS as decoy to impair neutrophil chemotaxis and defeat antimicrobial host defense [J]. J Leukoc Biol, 2019,106(6):1211-1219.
[24] 陈思远, 刘雪, 罗文新. 紧密连接蛋白claudins应用于肿瘤治疗的进展[J]. 生物工程学报, 2019,35(6):931-941.
[25] Liu H, Qian K, Zhang S, et al. Lead exposure induces structural damage, digestive stress, immune response and microbiota dysbiosis in the intestine of silver carp (Hypophthalmichthys molitrix) [J]. Comp Biochem Physiol C Toxicol Pharmacol, 2022, 262:109464.
[26] Kou H, Fu Y, He Y, et al. Chronic lead exposure induces histopathological damage, microbiota dysbiosis and immune disorder in the cecum of female Japanese quails (Coturnix japonica) [J]. Ecotoxicol Environ Saf, 2019,183(C):109588.
[27] Ding Z, Kong Y, Shao X, et al. Growth, antioxidant capacity, intestinal morphology, and metabolomic responses of juvenile Oriental river prawn (Macrobrachium nipponense) to chronic lead exposure [J]. Chemosphere, 2019,217:289-297.
[28] Zheng R, Wang P, Cao B, et al. Intestinal response characteristic and potential microbial dysbiosis in digestive tract of Bufo gargarizans after exposure to cadmium and lead, alone or combined [J]. Chemosphere, 2021(prepublish):129511.
[29] Tomaszewska E, Winiarska-Mieczan A, Dobrowolski P. The lack of protective effects of tea supplementation on liver and jejunal epithelium in adult rats exposed to cadmium and lead [J]. Environ Toxicol Pharmacol, 2015,40(3):708-714.
[30] Duan Y, Wang Y, Huang J, et al. Toxic effects of cadmium and lead exposure on intestinal histology, oxidative stress response, and microbial community of Pacific white shrimp Litopenaeus vannamei [J]. Mar Pollut Bull, 2021,167:112220.
[31] Dane H, Şi şman T. A morpho-histopathological study in the digestive tract of three fish species influenced with heavy metal pollution [J]. Chemosphere, 2020,242:125212.
[32] Martens EC, Neumann M, Desai MS. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier [J]. Nat Rev Microbiol, 2018,16(8):457-470.
[33] Xia J, Jin C, Pan Z, et al. Chronic exposure to low concentrations of lead induces metabolic disorder and dysbiosis of the gut microbiota in mice [J]. Sci Total Environ, 2018, (631-632):439-448.
[34] 屈定武, 翟齐啸, 于雷雷, 等. 多形拟杆菌对小鼠急性铅毒性的缓解作用[J]. 食品与发酵工业, 2019, 45(16):54-62.
[35] Cheng D, Li H, Zhou J, et al. Chlorogenic acid relieves lead-induced cognitive impairments and hepato-renal damage via regulating the dysbiosis of the gut microbiota in mice [J]. Food Funct, 2019,10(2):681-690.
[36] 王晶, 翟齐啸, 赵建新, 等. 双孢蘑菇粉复配益生菌的微生态制剂缓解铅暴露小鼠的效果评价[J]. 食品与发酵工业, 2019,45(12):20-27.
[37] Xia J, Lu L, Jin C, et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish [J]. Comp Biochem Physiol C Toxicol Pharmacol, 2018,209:1-8.
[38] Huang M, Liu Y, Dong W, et al. Toxicity of Pb continuous and pulse exposure on intestinal anatomy, bacterial diversity, and metabolites of Pelophylax nigromaculatus in pre-hibernation [J]. Chemosphere, 2021,290:133304.
[39] 彭镇委. 肠道菌群构成与儿童高铅血症的相关研究 [J]. 中国现代药物应用, 2016,10(21):61-62.
[40] 李秋燕, 李树然, 彭镇委. 探讨高铅血症儿童肠道菌群变化情况[J]. 中国实用医药, 2017,12(7):109-110.
[41] Sitarik AR, Arora M, Austin C, et al. Fetal and early postnatal lead exposure measured in teeth associates with infant gut microbiota [J]. Environ Int, 2020,144: 106062.
[42] Wu J, Wen XW, Faulk C, et al. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight increases in adult mice [J]. Toxicol Sci, 2016,151(2):324-333.
[43] 肖洁, 徐毅. 铅及益生菌对发育期大鼠肠道菌群结构的影响[J]. 合肥工业大学学报(自然科学版), 2019, 42(11):1557-1562.
[44] Sun Y, Tang Y, Xu X, et al. Lead exposure results in defective behavior as well as alteration of gut microbiota composition in flies and their offsprings [J]. Int J Dev Neurosci, 2020,80(8):699-708.
[45] 陈小君, 孟淑娟, 吴磊, 等. 粪便移植对铅暴露肥胖孕鼠子代肠道微生态及神经行为的作用研究[J].河北北方学院学报(自然科学版), 2021,37(12):1-5,10.
[46] Tian F, Zhai Q, Zhao J, et al. Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice [J]. Biol Trace Elem Res, 2012,150(1-3):264-271.
[47] Bolan S, Seshadri B, Keely S, et al. Bioavailability of arsenic, cadmium, lead and mercury as measured by intestinal permeability [J]. Sci Rep, 2021,11(1):14675.
[48] Daisley BA, Monachese M, Trinder M, et al. Immobilization of cadmium and lead by Lactobacillus rhamnosus GR-1 mitigates apical-to-basolateral heavy metal translocation in a Caco-2 model of the intestinal epithelium [J]. Gut microbes, 2019,10(3):321-333.
[49] Giri SS, Jun JW, Yun S, et al. Characterisation of lactic acid bacteria isolated from the gut of cyprinus carpio that may be effective against lead toxicity[J]. Probiotics Antimicrob Proteins, 2019,11(1):65-73.
[50] Zhai Q, Wang J, Cen S, et al. Modulation of the gut microbiota by a galactooligosaccharide protects against heavy metal lead accumulation in mice [J]. Food Funct, 2019,10(6):3768-3781.
文章导航

/