临床医学论著

原发性肝细胞癌焦亡相关LncRNA预后模型的构建和验证*

  • 张海航 ,
  • 吴祎 ,
  • 卢彦达
展开
  • 海南医学院第一附属医院肿瘤内科,海南海口 570100

收稿日期: 2022-12-14

  网络出版日期: 2023-06-30

基金资助

*海南省自然基金高层次人才项目(821RC695)

Construction and validation of prognostic model of pyrotic-related lncRNA in primary hepatocellular carcinoma

  • ZHANG Haihang ,
  • WU Yi ,
  • LU Yanda
Expand
  • Department of Medical Oncology, The First Affiliated Hospital of Hainan Medical College, Haikou 570100, China

Received date: 2022-12-14

  Online published: 2023-06-30

摘要

目的: 构建焦亡相关的长链非编码RNA(long non-coding RNA,lncRNA)风险模型,以预测原发性肝细胞癌(hepatocellular carcinoma, HCC)的预后。方法: 从癌症基因组图谱(The Cancer Genome Atlas, TCGA)中下载TCGA-HCC转录本数据和临床病理信息,从HCC的表达数据中提取焦亡相关基因的表达矩阵,采用Pearson相关分析识别出焦亡基因相关的lncRNA。通过差异分析、单变量COX回归筛选差异表达的焦亡相关lncRNAs,多因素COX回归分析构建焦亡相关lncRNAs风险模型。通过1年、2年和3年生存率的AUC值、风险因素的AUC值和DCA验证风险模型评分性能。结果: 基于14个焦亡相关lncRNAs(MKLN1-AS、NRAV、LINC00205、PTOV1-AS1、SNHG20、FAM111A-DT、SNHG4、AC074117.1、AC091057.1、PXN-AS1、AL031985.3、AC025178.2、AC016747.1、AC099850.4)的风险模型被成功构建,在低危组的患者的预后优于高危组(P<0.001),并且在预测HCC预后方面优于传统的临床病理特征。此外,免疫检查点PDCD-1(PD-1)、CD274(PD-L1)、HAVCR2和IDO2在两个风险组之间也有不同的表达。结论: 本研究开发的焦亡相关lncRNA风险模型预测HCC患者的预后优于传统的临床病理特征。

本文引用格式

张海航 , 吴祎 , 卢彦达 . 原发性肝细胞癌焦亡相关LncRNA预后模型的构建和验证*[J]. 包头医学院学报, 2023 , 39(6) : 47 -53 . DOI: 10.16833/j.cnki.jbmc.2023.06.010

Abstract

Objective: To construct a long non-coding RNA (lncRNA) risk model associated with pyrosis so as to predict the prognosis of primary hepatocellular carcinoma (HCC). Methods: TCGA-HCC transcript data and clinicopathological information were downloaded from The Cancer Genome Atlas (TCGA), and the expression matrix of pyroxis-related genes was extracted from the HCC expression data. Pearson correlation analysis was used to identify pyroxis-related lncRNAs.The differentially expressed pyrotic-related lncRNAs were screened by difference analysis and univariate COX regression, and the risk model of pyrotic-related lncRNAs was constructed by multivariate COX regression analysis. The scoring performance of the risk model was verified by AUC values for 1-year, 2-year, and 3-year survival, AUC values for risk factors, and DCA. Results: A risk model based on 14 pyroticosis-related lncRNAs (MKLN1-AS, NRAV, LINC00205, PTOV1-AS1, SNHG20, FAM111A-DT, SNHG4, AC074117.1, AC091057.1, PXN-AS1, AL031985.3, AC025178.2, AC016747.1, AC099850.4) was successfully constructed, and patients in the low-risk group had a better prognosis than those in the high-risk group (P<0.001) and were superior to traditional clinicopathological features in predicting HCC outcomes.In addition, immune checkpoints PDCD-1 (PD-1), CD274(PD-L1), HAVCR2, and IDO2 were expressed differently between the two risk groups. Conclusion: The pyrotic-related lncRNA risk model developed in this study predicts the prognosis of HCC patients better than traditional clinicopathological features.

参考文献

[1] Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68(6):394-424.
[2] Sharma R. Descriptive epidemiology of incidence and mortality of primary liver cancer in 185 countries: evidence from GLOBOCAN 2018[J]. Jpn J Clin Oncol, 2020,50(12):1370-1379.
[3] Cerella C, Teiten MH, Radogna F, et al. From nature to bedside: pro-survival and cell death mechanisms as therapeutic targets in cancer treatment[J]. Biotechnol Adv, 2014,32(6):1111-1122.
[4] Fang Y, Tian S, Pan Y, et al. Pyroptosis: A new frontier in cancer[J]. Biomed Pharmacother, 2020,121:109595.
[5] Crowley LC, Marfell BJ, Scott AP, et al. Dead cert: measuring cell death[J]. Cold Spring Harb Protoc, 2016,(12):10.1101.
[6] Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017,42(4):245-254.
[7] Fernandes-Alnemri T, Wu J, Yu JW, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation[J]. Cell Death Differ, 2007,14(9):1590-1604.
[8] Huang L, McClatchy DB, Maher P, et al. Intracellular amyloid toxicity induces oxytosis/ferroptosis regulated cell death[J]. Cell Death Dis, 2020,11(10):828.
[9] Cookson BT, Brennan MA. Pro-inflammatory programmed cell death[J]. Trends Microbiol, 2001,9(3):113-114.
[10] Chu Q, Jiang Y, Zhang W, et al. Pyroptosis is involved in the pathogenesis of human hepatocellular carcinoma[J].Oncotarget, 2016,7(51):84658-84665.
[11] Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function[J].Nat Rev Genet, 2016,17(1):47-62.
[12] Engreitz JM, Ollikainen N, Guttman M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression[J].Nat Rev Mol Cell Biol, 2016,17(12):756-770.
[13] Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J].Nature, 2010,464(7291):1071-1076.
[14] Chen Z, He M, Chen J, et al. Long non-coding RNA SNHG7 inhibits NLRP3-dependent pyroptosis by targeting the miR-34a/SIRT1 axis in liver cancer[J]. Oncol Lett, 2020,20(1):893-901.
[15] Ma Y, Chen Y, Lin C, et al. Biological functions and clinical significance of the newly identified long non-coding RNA RP1-85F18.6 in colorectal cancer[J]. Oncol Rep, 2018,40(5):2648-2658.
[16] Hu H, Wang Y, Ding X, et al. Long non-coding RNA XLOC_000647 suppresses progression of pancreatic cancer and decreases epithelial-mesenchymal transition-induced cell invasion by down-regulating NLRP3[J]. Mol Cancer, 2018,17(1):18.
[17] Karki R, Kanneganti TD. Diverging inflammasome signals in tumorigenesis and potential targeting[J]. Nat Rev Cancer, 2019,19(4):197-214.
[18] Xia X, Wang X, Cheng Z, et al. The role of pyroptosis in cancer: pro-cancer or pro-"host"?[J]. Cell Death Dis, 2019,10(9):650.
[19] Wang B, Yin Q. AIM2 inflammasome activation and regulation: A structural perspective[J]. J Struct Biol, 2017,200(3):279-282.
[20] Man SM, Kanneganti TD. Regulation of inflammasome activation [J]. Immunol Rev, 2015,265(1):6-21.
[21] Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012,16(5):284-287.
[22] Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015,43(7):e47.
[23] Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent[J].J Stat Softw, 2010,33(1):1-22.
[24] Tao C, Huang K, Shi J, et al. Genomics and prognosis analysis of epithelial-mesenchymal transition in glioma[J]. Front Oncol, 2020,10:183.
[25] Goodman A, Patel SP, Kurzrock R. PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas[J]. Nat Rev Clin Oncol, 2017,14(4):203-220.
[26] 彭巍, 江榕, 李勇, 等. 人诱导多能间充质干细胞来源外泌体对肺泡巨噬细胞焦亡的抑制作用[J].中华危重病急救医学,2021,33(01):43-48.
[27] Martinon F, Pétrilli V, Mayor A, et al. Gout-associated uric acid crystals activate the NALP3 inflammasome[J].Nature, 2006,440(7081):237-241.
[28] Luan J, Zhang X, Wang S, et al. NOD-like receptor protein 3 inflammasome-dependent IL-1β accelerated ConA-induced hepatitis[J]. Front Immunol, 2018,9:758.
[29] Gao W, Chen X, Chi W, et al. Long non - coding RNA MKLN1 - AS aggravates hepatocellular carcinoma progression by functioning as a molecular sponge for miR - 654 - 3p, thereby promoting hepatoma - derived growth factor expression[J]. Int J Mol Med, 2020,46(5):1743-1754.
[30] Long X, Li Q, Zhi LJ, et al. LINC00205 modulates the expression of EPHX1 through the inhibition of miR-184 in hepatocellular carcinoma as a ceRNA [J]. J Cell Physiol, 2020,235(3),3013-3021.
[31] Zhang D, Cao C, Liu L, et al. Up-regulation of LncRNA SNHG20 Predicts Poor Prognosis in Hepatocellular Carcinoma[J]. J Cancer, 2016,7(5):608-617.
[32] Chow EY, Zhang J, Qin H, et al. Characterization of hepatocellular carcinoma cell lines using a fractionation-then-sequencing approach reveals nuclear-enriched HCC-associated lncRNAs[J]. Front Genet, 2019,10:1081.
[33] Yuan JH, Liu XN, Wang TT, et al. The MBNL3 splicing factor promotes hepatocellular carcinoma by increasing PXN expression through the alternative splicing of lncRNA-PXN-AS1[J]. Nat Cell Biol, 2017,19(7):820-832.
[34] Erkes DA, Cai W, Sanchez IM, et al. Mutant BRAF and MEK inhibitors regulate the tumor immune microenvironment via pyroptosis[J]. Cancer Discov, 2020,10(2):254-269.
[35] Garnelo M, Tan A, Her Z, et al. Interaction between tumour-infiltrating B cells and T cells controls the progression of hepatocellular carcinoma[J]. Gut, 2017,66(2):342-351.
文章导航

/