基础医学论著

黄芪甲苷通过DNA甲基化调节VEGFA参与急性低氧脑损伤的保护作用*

  • 杨海霞 ,
  • 靳庆玲 ,
  • 林家静 ,
  • 谢伟 ,
  • 鲍牧兰 ,
  • 巴德仁贵
展开
  • 1.包头医学院医学技术与麻醉学院(内蒙古自治区低氧转化医学重点实验室),内蒙古包头 014040;
    2.包头医学院基础医学与法医学院

收稿日期: 2022-11-23

  网络出版日期: 2023-06-30

基金资助

*国家自然科学基金项目(82060337,82071479) ,内蒙古自然科学基金项目( 2019BS03030);包头医学院花蕾计划(HL2020003)

Astragaloside Ⅳ regulates the expression of VEGFA to protect brain from hypoxic through DNA methylation

  • YANG Haixia ,
  • JIN Qingling ,
  • LIN Jiajing ,
  • XIE Wei ,
  • BAO Mulan ,
  • BADE Rengui
Expand
  • 1. School of Medical Technology and Anesthesiology & Inner Mongolia Key Laboratory of Hypoxic Translational Medicine, Baotou Medical College, Baotou 014040, China;
    2. School of Basic Medicine and Forensic Sciences, Baotou Medical College

Received date: 2022-11-23

  Online published: 2023-06-30

摘要

目的: 研究黄芪甲苷(AS-Ⅳ)通过影响DNA甲基转移酶表达变化来上调血管内皮生长因子A(VEGFA)表达水平减轻急性低氧造成的脑损伤。方法: 以小鼠海马神经元细胞(HT22细胞)为研究对象,分为对照组(Control)、低氧组(Hypoxia)和黄芪甲苷处理组(H+AS-Ⅳ)。将HT22细胞低氧13 h复氧6 h构建低氧模型,H+AS-Ⅳ组于复氧的同时给与100 μmol/L的黄芪甲苷药物处理。荧光倒置显微镜观察细胞形态变化;采用Real-time PCR 检测DNA甲基化转移酶1(DNMT1)、DNA甲基化转移酶3A(DNMT3A)、DNA甲基化转移酶3B(DNMT3B)、VEGFA在mRNA水平上的表达变化;采用蛋白免疫印迹法(Western blot)检测DNMT1、DNMT3A、DNMT3B在蛋白水平上的表达变化。结果: 与对照组相比,低氧后,HT22细胞胞体变小,触角变短。DNMT1、DNMT3A的mRNA水平和蛋白水平均有所下降(P<0.05),DNMT3B则表达上升(P<0.05),VEGFA的mRNA水平下降(P<0.05)。与低氧组相比,给予AS-Ⅳ治疗后细胞形态有所改善。DNMT1、DNMT3A的mRNA水平和蛋白水平均无变化,DNMT3B则有所降低(P<0.05),VEGFA的mRNA水平上升(P<0.05)。结论: 黄芪甲苷可以下调低氧后DNMT3B的表达水平,发挥神经保护作用,这一保护机制可能是通过上调VEGFA的表达来发挥的。

本文引用格式

杨海霞 , 靳庆玲 , 林家静 , 谢伟 , 鲍牧兰 , 巴德仁贵 . 黄芪甲苷通过DNA甲基化调节VEGFA参与急性低氧脑损伤的保护作用*[J]. 包头医学院学报, 2023 , 39(6) : 5 -9 . DOI: 10.16833/j.cnki.jbmc.2023.06.002

Abstract

Objective: To investigate the effect of Astragaloside IV (AS-Ⅳ) on the expression of DNA methyltransferase to up-regulate the expression level of vascular endothelial growth factor A (VEGFA) to reduce brain injury caused by acute hypoxia. Methods: Mice hippocampal neurons (HT22 cells) were divided into Control group, Hypoxia group and Astragaloside IV group (H+AS-Ⅳ). HT22 cells were hypoxic for 13 h and reoxygenated for 6 h to establish a hypoxic model. Group H+AS-Ⅳ was treated with 100 μmol/L astragaloside IV at the same time of reoxygenation. The morphological changes of cells were observed by fluorescence inverted microscope. Real-time PCR was used to detect the expression changes of DNA methyltransferase 1 (DNMT1), DNA methyltransferase 3A (DNMT3A), DNA methyltransferase 3B (DNMT3B) and VEGFA at mRNA level. The expression of DNMT1, DNMT3A and DNMT3B at the protein level was detected by Western blot. Results: Compared with the control group, the cell body of HT22 cells became smaller and the antennae became shorter after hypoxia. The mRNA and protein levels of DNMT1 and DNMT3A were decreased (P<0.05), while the expression of DNMT3B was increased (P<0.05), and the mRNA level of VEGFA was decreased (P<0.05). Compared with the hypoxic group, the cell morphology was improved after AS-Ⅳ treatment. The mRNA level and protein level of DNMT1 and DNMT3A were unchanged, while the mRNA level of DNMT3B was decreased (P<0.05), and the mrna level of VEGFA was increased (P<0.05). Conclusion: Astragaloside Ⅳ can downregulate the expression of DNMT3B after hypoxia, exerting a neuroprotective effect, and this protective mechanism may be exerted by upregulating the expression of VEGFA.

参考文献

[1] Burtscher J, Mallet RT, Burtscher M, et al. Hypoxia and brain aging: Neurodegeneration or neuroprotection?[J]. Ageing Research Reviews, 2021, 68: 101343.
[2] Nyakas C, Buwalda B, Luiten PG. Hypoxia and brain development[J]. Prog Neurobiol, 1996,49(1):1-51.
[3] Cheng S, Zhang X, Feng Q, et al. Astragaloside Ⅳ exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway[J]. Life Sciences, 2019, 227: 82-93.
[4] Li L, Gan H, Jin H, et al. Astragaloside Ⅳ promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats[J]. International Immunopharmacology, 2021, 92: 107335.
[5] Yu NK, Baek SH, Kaang BK. DNA methylation-mediated control of learning and memory[J]. Molecular Brain, 2011, 4(1): 5.
[6] Shi G, Zhou X, Wang X, et al. Signatures of altered DNA methylation gene expression after central and peripheral nerve injury[J]. Journal of Cellular Physiology, 2020, 235(6): 5171-5181.
[7] Basang Z, Zhang S, Yang L, et al. Correlation of DNA methylation patterns to the phenotypic features of Tibetan elite alpinists in extreme hypoxia[J]. Journal of Genetics and Genomics, 2021, 48(10): 928-935.
[8] Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development[J]. Cell, 2019, 176(6): 1248-1264.
[9] Mackenzie F, Ruhrberg C. Diverse roles for VEGF-A in the nervous system[J]. Development, 2012, 139(8): 1371-1380.
[10] Zhang N, Chen J, Ferraro GB, et al. Anti-VEGF treatment improves neurological function in tumors of the nervous system[J]. Experimental Neurology, 2018, 299: 326-333.
[11] Choudhry H, Harris AL. Advances in hypoxia-inducible factor biology[J]. Cell Metabolism, 2018, 27(2): 281-298.
[12] Jha NK, Jha SK, Sharma R, et al. Hypoxia-induced signaling activation in neurodegenerative diseases: Targets for new therapeutic Strategies[J]. Journal of Alzheimer's Disease, 2018, 62(1): 15-38.
[13] Semenza GL. HIF-1 and human disease: one highly involved factor[J]. Genes & Development, 2000, 14(16): 1983-1991.
[14] Hartley I, Elkhoury FF, Heon Shin J, et al. Long-lasting changes in DNA methylation following short-term hypoxic exposure in primary hippocampal neuronal cultures[J]. PLoS ONE, 2013, 8(10): e77859.
[15] Lv Y, Zhang C, Jian H, et al. Regulating DNA methylation could reduce neuronal ischemia response and apoptosis after ischemia-reperfusion injury[J]. Gene, 2022, 837: 146689.
[16] Xu S, Li Y, Chen JP, et al. Oxygen glucose deprivation/re-oxygenation-induced neuronal cell death is associated with Lnc-D63785 m6A methylation and miR-422a accumulation[J]. Cell Death & Disease, 2020, 11(9): 816.
[17] Li H, Wang P, Huang F, et al. Astragaloside Ⅳ protects blood-brain barrier integrity from LPS-induced disruption via activating Nrf2 antioxidant signaling pathway in mice[J]. Toxicology and Applied Pharmacology, 2018, 340: 58-66.
[18] Li L, Hou X, Xu R, et al. Research review on the pharmacological effects of astragaloside Ⅳ[J]. Fundamental & Clinical Pharmacology, 2017, 31(1): 17-36.
[19] Zhang J, Wu C, Gao L, et al. Astragaloside Ⅳ derived from Astragalus membranaceus: A research review on the pharmacological effects[J] Adv Pharmacology, 2020,87: 89-112.
[20] Li S, Dou B, Shu S, et al. Suppressing NK cells by astragaloside Ⅳ protects against acute ischemic stroke in mice via inhibiting STAT3[J]. Front Pharmacology, 2021, 12: 802047.
[21] Khaibullina AA, Rosenstein JM, Krum JM. Vascular endothelial growth factor promotes neurite maturation in primary CNS neuronal cultures[J]. Developmental Brain Research, 2004, 148(1): 59-68.
[22] Nanduri J, Semenza GL, Prabhakar NR. Epigenetic changes by DNA methylation in chronic and intermittent hypoxia[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2017, 313(6): L1096-L1100.
[23] Li X, Liu B, Yang J, et al. DNA methylation in promoter region of immune related genes STAT3 and VEGFA and biochemical parameters change in muscle of Japanese flounder under acute hypoxia[J]. Developmental & Comparative Immunology, 2022, 129: 104295.
文章导航

/