基础医学论著

基于TMT蛋白组学研究纳米氧化铈对小鼠脑组织的作用*

  • 李宜格 ,
  • 郭丽娜 ,
  • 李裕林 ,
  • 梅建军 ,
  • 张涛 ,
  • 赵继军 ,
  • 王艳芳
展开
  • 1.内蒙古科技大学包头医学院,内蒙古包头 014040;
    2.包头医学院第一附属医院

收稿日期: 2023-03-15

  网络出版日期: 2023-05-24

基金资助

*内蒙古自然科学基金(NO.2020MS08016);包头医学院博士自然科研启动金项目(NO.BSJJ201902)

Study on the effect of cerium oxide nanoparticles on brain tissues of mice under TMT-based proteomics

  • LI Yige ,
  • GUO Li'na ,
  • LI Yulin ,
  • MEI Jianjun ,
  • ZHANG Tao ,
  • ZHAO Jijun ,
  • WANG Yanfang
Expand
  • 1. Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou 014040, China;
    2. The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology

Received date: 2023-03-15

  Online published: 2023-05-24

摘要

目的:探究纳米氧化铈对小鼠海马组织的作用,利用蛋白质组学进行差异蛋白分析,探析在脑相关疾病治疗药物的开发应用中,纳米氧化铈是否可以作为药物递送载体。方法:将ICR小鼠随机分为空白组和纳米氧化铈组,纳米氧化铈组尾静脉注射粒径为2~6 nm的纳米氧化铈(0.4 mg/kg),对照组给予等计量的生理盐水,通过行为学、组织病理学和TMT蛋白质组学进行分析。结果:与对照组相比,纳米氧化铈组小鼠行为学和组织病理学表现差异无统计学意义(P>0.05),蛋白组学发现523种蛋白质存在差异表达,其中243个蛋白下调,280个蛋白上调。KEGG通路分析表明,差异蛋白富集的主要通路包括氧化磷酸化信号通路、Wnt信号通路、长时程增强信号通路、胆固醇代谢通路等。结论:粒径为2~6 nm,剂量为0.4 mg/kg的纳米氧化铈对小鼠海马组织没有损伤作用,可作为药物递送的载体。

本文引用格式

李宜格 , 郭丽娜 , 李裕林 , 梅建军 , 张涛 , 赵继军 , 王艳芳 . 基于TMT蛋白组学研究纳米氧化铈对小鼠脑组织的作用*[J]. 包头医学院学报, 2023 , 39(5) : 10 -16 . DOI: 10.16833/j.cnki.jbmc.2023.05.003

Abstract

Objective: To study the effect of cerium oxide nanoparticles on hippocampus of mice, and to explore whether cerium oxide nanoparticle could be used as the drug delivery carrier in the development and application of drugs for brain related diseases by analyzing the differential proteins in proteomics. Methods: ICR mice were randomly divided into the blank group and cerium oxide nanoparticles group. The cerium oxide nanoparticle group was injected with cerium oxide nanoparticles of 2-6 nm in particle size (0.4 mg/kg) through tail vein, and the control group was given the same amount of normal saline. Results: Compared with the control group, there was no significant difference in the behavior and histopathology of mice in the cerium oxide nanoparticles group. The proteomics analysis showed that 523 proteins were differentially expressed, including 243 down-regulated proteins and 280 up-regulated proteins. KEGG pathway analysis showed that the main pathways enriched in differential proteins included oxidative phosphorylation signaling pathway, Wnt signaling pathway, long-term enhancement signaling pathway, cholesterol metabolism pathway. Conclusion: Cerium oxide nanoparticles with a particle size of 2-6 nm and a dose of 0.4 mg/kg has no harmful effect on hippocampal tissue of mice and could be used as the carrier for drug delivery.

参考文献

[1] He LZ, Huang GN, Liu HX, et al. Highly bioactive zeolitic imidazolate framework-8-capped nanotherapeutics for efficient reversal of reperfusion-induced injury in ischemic stroke[J].Sci Adv, 2020, 6(12): eaay9751.
[2] 刘冶坪, 牟娟, 吴惠霞. 氧化铈纳米粒子的制备及其生物应用进展[J].上海师范大学学报(自然科学版), 2019, 48(6): 665-670.
[3] Yu H, Jin FY, Liu D, et al.ROS-responsive nano-drug delivery system combining mitochondria-targeting ceria nanoparticles with atorvastatin for acute kidney injury[J].Theranostics, 2020, 10(5): 2342-2357.
[4] An JH, Hong SE, Yu SL, et al. Ceria-Zirconia nanoparticles reduce intracellular globotriaosylceramide accumulation and attenuate kidney injury by enhancing the autophagy flux in cellular and animal models of fabry disease[J].J Nanobiotechnology, 2022, 20(1): 125.
[5] 余慧. ROS响应性氧化铈载药纳米粒的急性肾损伤治疗研究[D].杭州: 浙江大学, 2021.
[6] Ni DL, Wei H, Chen WY, et al. Ceria Nanoparticles meet hepatic ischemia-reperfusion injury: the perfect imperfection[J].Adv Mater, 2019, 31(40): e1902956.
[7] Kalashnikova I, Chung SJ, Nafiujjaman M, et al. Ceria-based nanotheranostic agent for rheumatoid arthritis[J].Theranostics, 2020, 10(26): 11863-11880.
[8] Wu LY, Liu GY, Wang WY, et al. Cyclodextrin-modified CeO(2) nanoparticles as a multifunctional nanozyme for combinational therapy of psoriasis[J].Int J Nanomedicine, 2020, 15: 2515-2527.
[9] Zeng F, Shi YH, Wu CN, et al. A drug-free nanozyme for mitigating oxidative stress and inflammatory bowel disease[J].J Nanobiotechnology, 2022, 20(1): 107-123.
[10] 黄一可, 万敬员. 无机纳米材料及作为药物载体的抗氧化作用研究进展[J].中国医药工业杂志, 2016, 47(7): 933-939.
[11] Estevez AY, Ganesana M, Trentini JF, et al. Antioxidant enzyme-mimetic activity and neuroprotective effects of cerium oxide nanoparticles stabilized with various ratios of citric acid and EDTA[J].Biomolecules, 2019, 9(10): 562-586.
[12] Gao YT, Chen XB, Liu HL. A facile approach for synthesis of nano-CeO(2) particles loaded co-polymer matrix and their colossal role for blood-brain barrier permeability in Cerebral Ischemia[J].J Photochem Photobiol B, 2018, 187: 184-189.
[13] Ma QT, Wang CG, Wang M, et al. Investigation of brain damage mechanism in middle cerebral artery occlusion/reperfusion rats based on i-TRAQ quantitative proteomics[J].Exp Brain Res, 2021, 239(4): 1247-1260.
[14] Higginbotham L, Ping L, Dammer EB, et al. Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer's disease[J].Sci Adv, 2020, 6(43): eaaz9360.
[15] 乔阳, 陈群, 杨光, 等. 基于iTRAQ技术的脓毒症脑病的蛋白质组学研究[J].中国临床药理学与治疗学, 2019, 24(11): 1269-1274.
[16] Pang CC, Kiecker C, O'Brien JT, et al. Ammon's horn 2 (CA2) of the hippocampus: a long-known region with a new potential role in neurodegeneration[J].Neuroscientist, 2019, 25(2): 167-180.
[17] Zhang X, Connelly J, Levitan ES, et al. Calcium/calmodulin-dependent protein kinase II in cerebrovascular diseases[J].Transl Stroke Res, 2021, 12(4): 513-529.
[18] Li J, Zhang S, Liu X, et al. Neuroprotective effects of leonurine against oxygen-glucose deprivation by targeting Cx36/CaMKII in PC12 cells[J].PLoS One, 2018, 13(7): e0200705.
[19] Chang Y, Hung CF, Ko HH, et al. Albanin A, derived from the root bark of morus alba L., depresses glutamate release in the rat cerebrocortical nerve terminals via Ca(2+)/calmodulin/adenylate cyclase 1 suppression[J].J Med Food, 2021, 24(3): 209-217.
[20] Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, et al. VDAC1, mitochondrial dysfunction, and Alzheimer's disease[J].Pharmacol Res, 2018, 131: 87-101.
[21] Vijayan M, Alvir RV, Alvir RV, et al. A partial reduction of VDAC1 enhances mitophagy, autophagy, synaptic activities in a transgenic Tau mouse model[J].Aging Cell, 2022, 21(8): e13663.
[22] Xue LL, Du RL, Hu Y, et al. BDNF promotes neuronal survival after neonatal hypoxic-ischemic encephalopathy by up-regulating Stx1b and suppressing VDAC1[J].Brain Res Bull, 2021, 174: 131-140.
[23] Edwards G 3rd, Zhao J, Dash PK, et al. Traumatic brain injury induces tau aggregation and spreading[J].J Neurotrauma, 2020, 37(1): 80-92.
[24] Sanford SAI, McEwan WA. Type-I interferons in Alzheimer's disease and other tauopathies[J].Front Cell Neurosci, 2022, 16: 949340.
[25] Kwon HJ, Kim DS, Kim W, et al. Tat-Cannabinoid receptor interacting protein reduces ischemia-induced neuronal damage and its possible relationship with 14-3-3η[J].Cells, 2020, 9(8): 1827.
[26] Kargbo RB. PROTAC compounds targeting α-Synuclein protein for treating neurogenerative disorders: alzheimer's and parkinson's diseases[J].ACS Med Chem Lett, 2020, 11(6): 1086-1087.
[27] Cresto N, Gardier C, Gubinelli F, et al. The unlikely partnership between LRRK2 and α-synuclein in Parkinson's disease[J].Eur J Neurosci, 2019, 49(3): 339-363.
[28] Jiang WW, Wang QH, Liao YL, et al. The effect of sevoflurane on the spatial recall ability and expression of apolipoprotein E and β amyloid in the hippocampus in rats[J].Cell Mol Biol (Noisy-le-grand), 2020, 66(7): 35-43.
[29] Behzadfar L, Hassani S, Feizpour H, et al. Effects of mercuric chloride on spatial memory deficit-induced by beta-amyloid and evaluation of mitochondrial function markers in the hippocampus of rats[J].Metallomics, 2020, 12(1): 144-153.
文章导航

/