综述

钠-葡萄糖共同转运体2抑制剂在心力衰竭治疗中的研究进展*

  • 陶瑞 ,
  • 杨浩
展开
  • 1.皖南医学院,安徽芜湖 241001;
    2.皖南医学院附属弋矶山医院心血管内科

收稿日期: 2022-09-12

  网络出版日期: 2023-04-14

基金资助

*安徽省医疗卫生重点专科建设项目

Advances in the study of sodium-glucose co-transporter 2 inhibitors in the treatment of heart failure

  • TAO Rui ,
  • YANG Hao
Expand
  • Yijishan Hospital affiliated to Wannan Medical College, Wuhu 241000,China

Received date: 2022-09-12

  Online published: 2023-04-14

摘要

钠-葡萄糖共同转运体2(SGLT2)抑制剂是单独治疗糖尿病的一种新型制剂,人们发现合并2型糖尿病(T2DM)并使用SGLT2抑制剂治疗的心力衰竭(HF)患者的发病率以及病死率显著下降。目前关于SGLT2抑制剂使HF获益的具体机制尚不明确。人们进行了大量的临床试验研究,用于验证其心血管效应的稳定性。本文回顾了最新的相关文献,就SGLT2抑制剂在心力衰竭治疗中的机制以及研究进展进行综述。

本文引用格式

陶瑞 , 杨浩 . 钠-葡萄糖共同转运体2抑制剂在心力衰竭治疗中的研究进展*[J]. 包头医学院学报, 2023 , 39(4) : 86 -90 . DOI: 10.16833/j.cnki.jbmc.2023.04.018

参考文献

[1] Saisho Y. SGLT2 Inhibitors:the star in the treatment of type 2 diabetes [J].Diseases,2020,8(2):14.
[2] Jensen J, Omar M, Kistorp C, et al. Effects of empagliflozin on estimated extracellular volume, estimated plasma volume, and measured glomerular filtration rate in patients with heart failure (Empire HF Renal):a prespecified substudy of a double-blind, randomised, placebo-controlled trial[J]. Lancet Diabetes Endocrinol, 2021,9(2):106-116.
[3] Kolb H, Kempf K, Röhling M, et al. Ketone bodies: from enemy to friend and guardian angel[J]. BMC Med, 2021,19(1):313.
[4] Abdul Kadir A, Clarke K, Evans RD. Cardiac ketone body metabolism[J]. Biochim Biophys Acta Mol Basis Dis, 2020,1866(6):165739.
[5] Lopaschuk GD, Karwi QG, Ho KL, et al. Ketone metabolism in the failing heart[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2020,1865(12):158813.
[6] Yeves AM, Ennis IL. Na+/H+exchanger and cardiac hypertrophy[J]. Hipertens Riesgo Vasc, 2020,37(1):22-32.
[7] Al-Shamasi AA, Elkaffash R, Mohamed M, et al. Crosstalk between sodium-glucose cotransporter inhibitors and sodium-hydrogen exchanger 1 and 3 in cardiometabolic diseases[J]. Int J Mol Sci, 2021,22(23):12677.
[8] Packer M. SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: a paradigm shift in understanding their mechanism of action[J]. Diabetes Care, 2020,43(3):508-511.
[9] Salvatore T, Caturano A, Galiero R, et al.Cardiovascular benefits from gliflozins: Effects on endothelial function[J]. Biomedicines, 2021,9(10):1356.
[10] Correale M, Mazzeo P, Mallardi A, et al. Switch to SGLT2 inhibitors and improved endothelial function in diabetic patients with chronic heart failure[J]. Cardiovasc Drugs Ther, 2021:2021 Sep 14.
[11] Zhang Y, Lin X, Chu Y, et al. Dapagliflozin: a sodium-glucose cotransporter 2 inhibitor, attenuates angiotensin Ⅱ-induced cardiac fibrotic remodeling by regulating TGFβ1/Smad signaling[J]. Cardiovasc Diabetol, 2021,20(1):121.
[12] Singh JSS, Mordi IR, Vickneson K, et al. Dapagliflozin versus placebo on left ventricular remodeling in patients with diabetes and heart failure: the REFORM trial[J]. Diabetes Care, 2020,43(6):1356-1359.
[13] Kaplinsky E.DAPA-HF trial: dapagliflozin evolves from a glucose-lowering agent to a therapy for heart failure[J]. Drugs Context, 2020,9:2019-11-3.
[14] Nassif ME,Windsor SL, Tang F,et al.Dapagliflozin effects on biomarkers, symptoms, and functional status in patients with heart failure with reduced ejection fraction: the DEFINE-HF trial[J]. Circulation, 2019,140(18):1463-1476.
[15] Packer M,Butler J,Filippatos GS,et al. Evaluation of the effect of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality of patients with chronic heart failure and a reduced ejection fraction: rationale for and design of the EMPEROR-Reduced trial[J]. Eur J Heart Fail, 2019,21(10):1270-1278.
[16] Santos-Gallego CG,Vargas-Delgado AP, Requena-Ibanez JA, et al.Randomized trial of empagliflozin in nondiabetic patients with heart failure and reduced ejection fraction[J]. J Am Coll Cardiol, 2021,77(3):243-255.
[17] Anker SD,Butler J,Filippatos GS,et al.Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-Preserved Trial[J]. Eur J Heart Fail, 2019,21(10):1279-1287.
[18] Nassif ME, Windsor SL, Borlaug BA,et al.The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial[J].Nat Med,2021,27(11):1954-1960.
[19] Bhatt DL,Szarek M, Steg PG,et al. Sotagliflozin in patients with diabetes and recent worsening heart failure[J]. N Engl J Med, 2021,384(2):117-128.
[20] Qiu M, Ding LL, Zhang M, et al. Safety of four SGLT2 inhibitors in three chronic diseases: a meta-analysis of large randomized trials of SGLT2 inhibitors[J]. Diab Vasc Dis Res, 2021,18(2):14791641211011016.
[21] Butler J, Usman MS, Khan MS, et al. Efficacy and safety of SGLT2 inhibitors in heart failure: systematic review and meta-analysis[J]. ESC Heart Fail, 2020,7(6):3298-3309.
[22] Douros A, Lix LM, Fralick M, et al. Sodium-glucose cotransporter-2 inhibitors and the risk for diabetic ketoacidosis: a multicenter cohort study[J]. Ann Intern Med, 2020,173(6):417-425.
[23] Shi N, Shi Y, Xu J, et al. SGLT-2i and risk of malignancy in type 2 diabetes: a meta-analysis of randomized controlled trials[J]. Front Public Health, 2021,9:668368.
[24] Zhuo M, Hawley CE, Paik JM,et al. Association of sodium-glucose cotransporter-2 inhibitors with fracture risk in older adults with type 2 diabetes[J]. JAMA Netw Open, 2021,4(10):e2130762.
[25] Lin C, Zhu X, Cai X, et al. SGLT2 inhibitors and lower limb complications: an updated meta-analysis[J]. Cardiovasc Diabetol, 2021,20(1):91.
[26] Thong KY,Yadagiri M,Barnes DJ,et al. Clinical risk factors predicting genital fungal infections with sodium-glucose cotransporter 2 inhibitor treatment: the ABCD nationwide dapagliflozin audit[J]. Prim Care Diabetes, 2018,12(1):45-50.
文章导航

/