[1] Sun H, Saeedi P, Karurange S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119.
[2] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华内分泌代谢杂志, 2021(4): 311-398.
[3] Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14(2): 88-98.
[4] Milburn MV, Lawton KA. Application of metabolomics to diagnosis of insulin resistance[J]. Annu Rev Med, 2013, 64: 291-305.
[5] Pauling L, Robinson AB, Teranishi R, et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography[J]. Proc Natl Acad Sci USA, 1971, 68(10): 2374-2376.
[6] Roberts LD, Koulman A, Griffin JL. Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome[J]. Lancet Diabetes Endocrinol, 2014, 2(1): 65-75.
[7] Perng W, Hivert MF, Michelotti G, et al. Metabolomic predictors of dysglycemia in two U.S. youth cohorts[J]. Metabolites, 2022, 12(5): 404.
[8] Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes[J]. Nat. Med, 2011, 17(4): 448-453.
[9] Tilin T, Hughes AD, Wang Q, et al. Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE(Southall And Brent REvisited)Study[J]. Diabetologia, 2015, 58(5): 968-979.
[10] Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance[J]. Nat Rev Endocrinol, 2014, 10(12): 723-736.
[11] Mahendran Y, Jonsson A, Have CT, et al. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels[J]. Diabetologia, 2017, 60(5): 873-878.
[12] Wang Q, Holmes MV, Davey SG, et al. Genetic support for a causal role of insulin resistance on circulating branched-chain amino acids and inflammation[J]. Diabetes Care, 2017, 40(12): 1779-1786.
[13] Neinast M, Murashige D, Arany Z. Branched chain amino acids[J]. Annu Rev Physiol, 2019, 81: 139-164.
[14] Vangipurapu J, Fernandes Silva L, Kuulasmaa T, et al. Microbiota-related metabolites and the risk of type 2 diabetes[J]. Diabetes Care, 2020, 43(6): 1319-1325.
[15] Jin Q, Ma RCW. Metabolomics in diabetes and diabetic complications: insights from epidemiological studies [J]. Cells, 2021, 10(11): 2832.
[16] Wang-Sattler R, Yu ZH, Herder C, et al. Novel biomarkers for pre-diabetes identified by metabolomics[J]. Mol Syst Biol, 2012, 8: 615.
[17] Pontiroli AE, Pizzocri P, Caumo A, et al. Evaluation of insulin release and insulin sensitivity through oral glucose tolerance test: differences between NGT, IFG, IGT, and type 2 diabetes mellitus. A cross-sectional and follow-up study[J]. Acta Diabetol, 2004, 41(2): 70-76.
[18] Merino J, Leong A, Liu CT, et al. Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose [J]. Diabetologia, 2018, 61(6): 1315-1324.
[19] Wittemans LBL, Lotta LA, Oliver-Williams C, et al. Assessing the causal association of glycine with risk of cardio-metabolic diseases[J]. Nat Commun, 2019, 10(1): 1060.
[20] Svingen GF, Schartum-Hansen H, Pedersen ER, et al. Prospective associations of systemic and urinary choline metabolites with incident type 2 diabetes [J]. Clin Chem, 2016, 62(5): 755-765.
[21] Qiu GK, Zheng Y, Wang H, et al. Plasma metabolomics identified novel metabolites associated with risk of type 2 diabetes in two prospective cohorts of Chinese adults[J]. Int J Epidemiol, 2016, 45(5): 1507-1516.
[22] Peddinti G, Cobb J, Yengo L, et al. Early metabolic markers identify potential targets for the prevention of type 2 diabetes[J]. Diabetologia, 2017, 60(9): 1740-1750.
[23] Palmer ND, Stevens RD, Antinozzi PA, et al. Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study[J]. J Clin Endocrinol Metab, 2015, 100(3): E463-468.
[24] Cobb J, Eckhart A, Motsinger-Reif A, et al. α-hydroxybutyric acid is a selective metabolite biomarker of impaired glucose tolerance[J]. Diabetes Care, 2016, 39(6): 988-995.
[25] Ferrannini E, Natali A, Camastra S, et al. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance [J]. Diabetes, 2013, 62(5): 1730-1737.
[26] Keller U, Lustenberger M, Stauffacher W. Effect of insulin on ketone body clearance studied by a ketone body "clamp" technique in normal man [J]. Diabetologia, 1988, 31(1): 24-29.
[27] Vangipurapu J, Fernandes Silva L, Kuulasmaa T, et al. Microbiota-related metabolites and the risk of type 2 diabetes [J]. Diabetes Care, 2020, 43(6): 1319-1325.
[28] Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease [J]. Diabetes, 1988, 37(12): 1595-1607.
[29] Otvos JD. Measurement of lipoprotein subclass profiles by nuclear magnetic resonance spectroscopy [J]. Clin Lab, 2002, 48(3-4): 171-180.
[30] Festa A, Williams K, Hanley AJ, et al. Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the Insulin Resistance Atherosclerosis Study [J]. Circulation, 2005, 111(25): 3465-3472.
[31] Mora S, Otvos JD, Rosenson RS, et al. Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women [J]. Diabetes, 2010, 59(5): 1153-1160.
[32] Fizelova M, Miilunpohja M, Kangas AJ, et al. Associations of multiple lipoprotein and apolipoprotein measures with worsening of glycemia and incident type 2 diabetes in 6607 non-diabetic Finnish men[J]. Atherosclerosis, 2015, 240(1): 272-277.
[33] Sokooti S, Flores-Guerrero JL, Kieneker LM, et al. HDL particle subspecies and their association with incident type 2 diabetes: the PREVEND study[J]. J Clin Endocrinol Metab, 2021, 106(6): 1761-1772.
[34] Mahendran Y, Cederberg H, Vangipurapu J, et al. Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men [J]. Diabetes Care, 2013, 36(11): 3732-3738.
[35] Feskens EJ, van Dam RM. Dietary fat and the etiology of type 2 diabetes: an epidemiological perspective[J]. Nutr Metab Cardiovasc Dis, 1999, 9(2): 87-95.
[36] Ahola-Olli AV, Mustelin L, Kalimeri M, et al. Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts[J]. Diabetologia, 2019, 62(12): 2298-2309.
[37] Yuan S, Larsson SC. Association of genetic variants related to plasma fatty acids with type 2 diabetes mellitus and glycaemic traits: a Mendelian randomisation study[J]. Diabetologia, 2020, 63(1): 116-123.
[38] Zhao JV, Schooling CM. Effect of linoleic acid on ischemic heart disease and its risk factors: a Mendelian randomization study[J]. BMC Med, 2019, 17(1): 61.
[39] Lehtovirta M, Pahkala K, Niinikoski H, et al. Effect of dietary counseling on a comprehensive metabolic profile from childhood to adulthood[J]. J Pediatr, 2018, 195: 190-198.e3.
40] Christensen AA, Gannon M. The Beta cell in type 2 diabetes[J]. Curr Diab Rep, 2019, 19(9): 81.
[41] She P, Van Horn C, Reid T, et al. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism[J]. Am J Physiol Endocrinol Metab, 2007, 293(6): E1552-63.
[42] Herchuelz A, Lebrun P, Boschero AC, et al. Malaisse WJ. Mechanism of arginine-stimulated Ca2+ influx into pancreatic B cell [J]. Am J Physiol, 1984, 246(1 Pt 1): E38-E43.
[43] McClenaghan NH, Barnett CR, Flatt PR. Na+ cotransport by metabolizable and nonmetabolizable amino acids stimulates a glucose-regulated insulin-secretory response[J]. Biochem Biophys Res Commun, 1998, 249(2): 299-303.
[44] Li C, Najafi H, Daikhin Y, et al. Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets[J]. J Biol Chem, 2003, 278(5): 2853-2858.
[45] Yoon MS. The Emerging role of branched-chain amino acids in insulin resistance and metabolism[J]. Nutrients, 2016, 8(7): 405.
[46] Jang C, Oh SF, Wada S, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance[J]. Nat Med, 2016, 22(4): 421-426.
[47] Unger RH. Lipotoxic diseases [J]. Annu Rev Med, 2002, 53: 319-336.
[48] Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction[J]. Eur J Clin Invest, 2002, 32(Suppl 3): 14-23.
[49] Aguer C, McCoin CS, Knotts TA, et al. Acylcarnitines: potential implications for skeletal muscle insulin resistance[J]. FASEB J, 2015, 29(1): 336-345.
[50] Coll T, Eyre E, Rodríguez-Calvo R, et al. Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells[J]. J Biol Chem, 2008, 283(17): 11107-16.
[51] Karagiannidis E, Moysidis DV, Papazoglou AS, et al. Prognostic significance of metabolomic biomarkers in patients with diabetes mellitus and coronary artery disease [J]. Cardiovasc Diabetol, 2022, 21(1): 70.
[52] Pantelis AG. Metabolomics in bariatric and metabolic surgery research and the potential of deep learning in bridging the gap[J]. Metabolites, 2022, 12(5): 458.