综述

代谢组学在糖尿病中的研究进展*

  • 马成军 ,
  • 杨丽霞 ,
  • 梁永林 ,
  • 朱向东 ,
  • 闫丰喆
展开
  • 1.甘肃中医药大学,甘肃兰州 730000;
    2.甘肃中医药研究院;
    3.宁夏医科大学

收稿日期: 2022-07-27

  网络出版日期: 2023-03-07

基金资助

*甘肃省教育厅:产业支撑项目(2021CYZC-03)

Research progress of metabolomics in diabetes

  • MA Chengjun ,
  • YANG Lixia ,
  • YANG yonglin ,
  • ZHU Xiangdong ,
  • YAN Fengzhe
Expand
  • 1. Gansu University of Chinese Medicine,Lanzhou 730000, China;
    2. Gansu Institute of TCM;
    3. Ningxia Medical University

Received date: 2022-07-27

  Online published: 2023-03-07

摘要

糖尿病是一组以高血糖为特征的代谢性疾病。代谢组学主要关注生物体被扰动后代谢产物的变化并识别和量化多种集体生物标志物及其变化规律,为复杂代谢性疾病研究提供了技术手段,有益于进一步明确糖尿病发病及其进展的机制。

本文引用格式

马成军 , 杨丽霞 , 梁永林 , 朱向东 , 闫丰喆 . 代谢组学在糖尿病中的研究进展*[J]. 包头医学院学报, 2023 , 39(1) : 84 -90 . DOI: 10.16833/j.cnki.jbmc.2023.01.016

Abstract

Diabetes is a group of metabolic diseases characterized by hyperglycemia. Metabolomics is the identification and quantification of small molecules present in biological systems, mainly focuses on the changes of metabolites after organisms being perturbed, which could provide technological to the study of complex metabolic disease and help to figure out the mechanism of diabetes.

参考文献

[1] Sun H, Saeedi P, Karurange S, et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183: 109119.
[2] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 中华内分泌代谢杂志, 2021(4): 311-398.
[3] Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14(2): 88-98.
[4] Milburn MV, Lawton KA. Application of metabolomics to diagnosis of insulin resistance[J]. Annu Rev Med, 2013, 64: 291-305.
[5] Pauling L, Robinson AB, Teranishi R, et al. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography[J]. Proc Natl Acad Sci USA, 1971, 68(10): 2374-2376.
[6] Roberts LD, Koulman A, Griffin JL. Towards metabolic biomarkers of insulin resistance and type 2 diabetes: progress from the metabolome[J]. Lancet Diabetes Endocrinol, 2014, 2(1): 65-75.
[7] Perng W, Hivert MF, Michelotti G, et al. Metabolomic predictors of dysglycemia in two U.S. youth cohorts[J]. Metabolites, 2022, 12(5): 404.
[8] Wang TJ, Larson MG, Vasan RS, et al. Metabolite profiles and the risk of developing diabetes[J]. Nat. Med, 2011, 17(4): 448-453.
[9] Tilin T, Hughes AD, Wang Q, et al. Diabetes risk and amino acid profiles: cross-sectional and prospective analyses of ethnicity, amino acids and diabetes in a South Asian and European cohort from the SABRE(Southall And Brent REvisited)Study[J]. Diabetologia, 2015, 58(5): 968-979.
[10] Lynch CJ, Adams SH. Branched-chain amino acids in metabolic signalling and insulin resistance[J]. Nat Rev Endocrinol, 2014, 10(12): 723-736.
[11] Mahendran Y, Jonsson A, Have CT, et al. Genetic evidence of a causal effect of insulin resistance on branched-chain amino acid levels[J]. Diabetologia, 2017, 60(5): 873-878.
[12] Wang Q, Holmes MV, Davey SG, et al. Genetic support for a causal role of insulin resistance on circulating branched-chain amino acids and inflammation[J]. Diabetes Care, 2017, 40(12): 1779-1786.
[13] Neinast M, Murashige D, Arany Z. Branched chain amino acids[J]. Annu Rev Physiol, 2019, 81: 139-164.
[14] Vangipurapu J, Fernandes Silva L, Kuulasmaa T, et al. Microbiota-related metabolites and the risk of type 2 diabetes[J]. Diabetes Care, 2020, 43(6): 1319-1325.
[15] Jin Q, Ma RCW. Metabolomics in diabetes and diabetic complications: insights from epidemiological studies [J]. Cells, 2021, 10(11): 2832.
[16] Wang-Sattler R, Yu ZH, Herder C, et al. Novel biomarkers for pre-diabetes identified by metabolomics[J]. Mol Syst Biol, 2012, 8: 615.
[17] Pontiroli AE, Pizzocri P, Caumo A, et al. Evaluation of insulin release and insulin sensitivity through oral glucose tolerance test: differences between NGT, IFG, IGT, and type 2 diabetes mellitus. A cross-sectional and follow-up study[J]. Acta Diabetol, 2004, 41(2): 70-76.
[18] Merino J, Leong A, Liu CT, et al. Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose [J]. Diabetologia, 2018, 61(6): 1315-1324.
[19] Wittemans LBL, Lotta LA, Oliver-Williams C, et al. Assessing the causal association of glycine with risk of cardio-metabolic diseases[J]. Nat Commun, 2019, 10(1): 1060.
[20] Svingen GF, Schartum-Hansen H, Pedersen ER, et al. Prospective associations of systemic and urinary choline metabolites with incident type 2 diabetes [J]. Clin Chem, 2016, 62(5): 755-765.
[21] Qiu GK, Zheng Y, Wang H, et al. Plasma metabolomics identified novel metabolites associated with risk of type 2 diabetes in two prospective cohorts of Chinese adults[J]. Int J Epidemiol, 2016, 45(5): 1507-1516.
[22] Peddinti G, Cobb J, Yengo L, et al. Early metabolic markers identify potential targets for the prevention of type 2 diabetes[J]. Diabetologia, 2017, 60(9): 1740-1750.
[23] Palmer ND, Stevens RD, Antinozzi PA, et al. Metabolomic profile associated with insulin resistance and conversion to diabetes in the Insulin Resistance Atherosclerosis Study[J]. J Clin Endocrinol Metab, 2015, 100(3): E463-468.
[24] Cobb J, Eckhart A, Motsinger-Reif A, et al. α-hydroxybutyric acid is a selective metabolite biomarker of impaired glucose tolerance[J]. Diabetes Care, 2016, 39(6): 988-995.
[25] Ferrannini E, Natali A, Camastra S, et al. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance [J]. Diabetes, 2013, 62(5): 1730-1737.
[26] Keller U, Lustenberger M, Stauffacher W. Effect of insulin on ketone body clearance studied by a ketone body "clamp" technique in normal man [J]. Diabetologia, 1988, 31(1): 24-29.
[27] Vangipurapu J, Fernandes Silva L, Kuulasmaa T, et al. Microbiota-related metabolites and the risk of type 2 diabetes [J]. Diabetes Care, 2020, 43(6): 1319-1325.
[28] Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease [J]. Diabetes, 1988, 37(12): 1595-1607.
[29] Otvos JD. Measurement of lipoprotein subclass profiles by nuclear magnetic resonance spectroscopy [J]. Clin Lab, 2002, 48(3-4): 171-180.
[30] Festa A, Williams K, Hanley AJ, et al. Nuclear magnetic resonance lipoprotein abnormalities in prediabetic subjects in the Insulin Resistance Atherosclerosis Study [J]. Circulation, 2005, 111(25): 3465-3472.
[31] Mora S, Otvos JD, Rosenson RS, et al. Lipoprotein particle size and concentration by nuclear magnetic resonance and incident type 2 diabetes in women [J]. Diabetes, 2010, 59(5): 1153-1160.
[32] Fizelova M, Miilunpohja M, Kangas AJ, et al. Associations of multiple lipoprotein and apolipoprotein measures with worsening of glycemia and incident type 2 diabetes in 6607 non-diabetic Finnish men[J]. Atherosclerosis, 2015, 240(1): 272-277.
[33] Sokooti S, Flores-Guerrero JL, Kieneker LM, et al. HDL particle subspecies and their association with incident type 2 diabetes: the PREVEND study[J]. J Clin Endocrinol Metab, 2021, 106(6): 1761-1772.
[34] Mahendran Y, Cederberg H, Vangipurapu J, et al. Glycerol and fatty acids in serum predict the development of hyperglycemia and type 2 diabetes in Finnish men [J]. Diabetes Care, 2013, 36(11): 3732-3738.
[35] Feskens EJ, van Dam RM. Dietary fat and the etiology of type 2 diabetes: an epidemiological perspective[J]. Nutr Metab Cardiovasc Dis, 1999, 9(2): 87-95.
[36] Ahola-Olli AV, Mustelin L, Kalimeri M, et al. Circulating metabolites and the risk of type 2 diabetes: a prospective study of 11,896 young adults from four Finnish cohorts[J]. Diabetologia, 2019, 62(12): 2298-2309.
[37] Yuan S, Larsson SC. Association of genetic variants related to plasma fatty acids with type 2 diabetes mellitus and glycaemic traits: a Mendelian randomisation study[J]. Diabetologia, 2020, 63(1): 116-123.
[38] Zhao JV, Schooling CM. Effect of linoleic acid on ischemic heart disease and its risk factors: a Mendelian randomization study[J]. BMC Med, 2019, 17(1): 61.
[39] Lehtovirta M, Pahkala K, Niinikoski H, et al. Effect of dietary counseling on a comprehensive metabolic profile from childhood to adulthood[J]. J Pediatr, 2018, 195: 190-198.e3.
40] Christensen AA, Gannon M. The Beta cell in type 2 diabetes[J]. Curr Diab Rep, 2019, 19(9): 81.
[41] She P, Van Horn C, Reid T, et al. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism[J]. Am J Physiol Endocrinol Metab, 2007, 293(6): E1552-63.
[42] Herchuelz A, Lebrun P, Boschero AC, et al. Malaisse WJ. Mechanism of arginine-stimulated Ca2+ influx into pancreatic B cell [J]. Am J Physiol, 1984, 246(1 Pt 1): E38-E43.
[43] McClenaghan NH, Barnett CR, Flatt PR. Na+ cotransport by metabolizable and nonmetabolizable amino acids stimulates a glucose-regulated insulin-secretory response[J]. Biochem Biophys Res Commun, 1998, 249(2): 299-303.
[44] Li C, Najafi H, Daikhin Y, et al. Regulation of leucine-stimulated insulin secretion and glutamine metabolism in isolated rat islets[J]. J Biol Chem, 2003, 278(5): 2853-2858.
[45] Yoon MS. The Emerging role of branched-chain amino acids in insulin resistance and metabolism[J]. Nutrients, 2016, 8(7): 405.
[46] Jang C, Oh SF, Wada S, et al. A branched-chain amino acid metabolite drives vascular fatty acid transport and causes insulin resistance[J]. Nat Med, 2016, 22(4): 421-426.
[47] Unger RH. Lipotoxic diseases [J]. Annu Rev Med, 2002, 53: 319-336.
[48] Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction[J]. Eur J Clin Invest, 2002, 32(Suppl 3): 14-23.
[49] Aguer C, McCoin CS, Knotts TA, et al. Acylcarnitines: potential implications for skeletal muscle insulin resistance[J]. FASEB J, 2015, 29(1): 336-345.
[50] Coll T, Eyre E, Rodríguez-Calvo R, et al. Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells[J]. J Biol Chem, 2008, 283(17): 11107-16.
[51] Karagiannidis E, Moysidis DV, Papazoglou AS, et al. Prognostic significance of metabolomic biomarkers in patients with diabetes mellitus and coronary artery disease [J]. Cardiovasc Diabetol, 2022, 21(1): 70.
[52] Pantelis AG. Metabolomics in bariatric and metabolic surgery research and the potential of deep learning in bridging the gap[J]. Metabolites, 2022, 12(5): 458.
文章导航

/