Screening and adsorption characteristics of geographically distinct high-efficiency arsenic-removing bacteria

  • SONG Lixin ,
  • MIAO Jiahui ,
  • MA Yuhao ,
  • BAO Yan ,
  • REN Jingcai ,
  • LIN Jinlun ,
  • TIAN Rantong ,
  • GUO Zhimin ,
  • WANG Nan
Expand
  • 1. Baotou Center for Disease Control and Prevention, Baotou 014030, China;
    2. School of Public Health, Baotou Medical College;
    3. Liaoning Xiancaotang Pharmaceutical Limited Company

Received date: 2024-12-16

  Online published: 2025-09-12

Abstract

Objective: To screen a bacterium with high arsenic tolerance and provide high-quality strains for arsenic removal in arsenic contaminated environments. Methods: As(Ⅲ)-tolerant bacteria were isolated from soil and water samples collected from arsenic-containing areas, and their growth characteristics were studied under different temperatures, pH values and arsenic concentrations, a mathematical model was established to study the specific adsorption and arsenic removal laws of bacterial strains on As(Ⅲ). Results: The strain NSSbac-2 with high tolerance to As(Ⅲ) was screened out, which was Pseudomonas mendocina. The optimum growth conditions were temperature 37 ℃, pH=6, phosphate concentration 40 mg/L, and could survive under the condition of As(Ⅲ) concentration 600 mg/L; the kinetic model showed that the strain conformed to the surface adsorption law of As(Ⅲ). Conclusion: The strain NSSbac-2 showed excellent tolerance to As(Ⅲ).The kinetic model of As(Ⅲ) removal belongs to surface adsorption, which has the potential for analytical reuse and has high application value in treating arsenic-contaminated environments. It provides more scientific basis for further use of microorganisms to repair arsenic pollution and realize the industrialization of microbial treatment of arsenic pollution.

Cite this article

SONG Lixin , MIAO Jiahui , MA Yuhao , BAO Yan , REN Jingcai , LIN Jinlun , TIAN Rantong , GUO Zhimin , WANG Nan . Screening and adsorption characteristics of geographically distinct high-efficiency arsenic-removing bacteria[J]. Journal of Baotou Medical College, 2025 , 41(8) : 1 -6 . DOI: 10.16833/j.cnki.jbmc.2025.08.001

References

[1] 安礼航, 刘敏超, 张建强, 等. 土壤中砷的来源及迁移释放影响因素研究进展[J]. 土壤, 2020, 52(2): 234-246.
[2] 赵凤琴, 周蕾, 王智阅, 等. 二甲基砷酸对辽宁绒山羊皮肤成纤维细胞的毒性作用以及诱导细胞凋亡的机制[J]. 畜牧兽医学报, 2021, 52(7): 1845-1857.
[3] 王宏, 岳军, 解英波. 2010年内蒙古包头市土右旗饮水型地方性砷中毒病情监测结果分析[J]. 中国地方病学杂志, 2012, 31(5): 576-578.
[4] 赵瑞君, 马涛, 武文宏, 等. 土右旗缸房营村环境砷的调查[J]. 中国地方病学杂志, 2001, 20(3): 192-193.
[5] Hussain MM, Bibi I, Niazi NK, et al. Arsenic biogeochemical cycling in paddy soil-rice system: Interaction with various factors, amendments and mineral nutrients[J]. Sci Total Envir, 2021, 773: 145040.
[6] Muehe EM, Wang T, Kerl CF, et al. Rice production threatened by coupled stresses of climate and soil arsenic[J]. Nat Commun, 2019, 10(1): 4985.
[7] Zeng XC, Xu Y, He Z, et al. A powerful arsenite-oxidizing biofilm bioreactor derived from a single chemoautotrophic bacterial strain: Bioreactor construction, long-term operations and kinetic analysis[J]. Chemosphere, 2021, 273: 129672.
[8] 刘映彤, 薛林贵, 何园园, 等. 土壤高耐砷促生菌株的筛选及其对砷去除性能的研究[J]. 兰州交通大学学报, 2022, 41(2): 118-127.
[9] 唐萌. 一株高效除砷菌的除砷性能及机理研究[D]. 昆明: 云南大学, 2018.
[10] 肖未未. 好氧耐砷菌的分离鉴定及功能特性研究[D]. 长沙: 中南大学, 2022.
[11] 赵玉清, 李晋, 周广麒, 等. 一种嗜镍菌对含镍废水中Ni2+的特效吸附[J]. 中国生物工程杂志, 2012, 32(11), 92-97.
[12] Wei J, Shen B, Ye G, et al. Selenium and arsenic removal from water using amine sorbent, competitive adsorption and regeneration[J]. Environmen Pollut, 2021, 274: 115866.
[13] Shoham S, Weinberger A, Kaplan A, et al. Arsenate reducing bacteria isolated from the marine sponge Theonella swinhoei: Bioremediation potential[J]. Ecotoxicol Environ Saf, 2021, 222: 112522.
[14] Han YH, Fu JW, Xiang P, et al. Arsenic and phosphate rock impacted the abundance and diversity of bacterial arsenic oxidase and reductase genes in rhizosphere of As-hyperaccumulator Pteris vittata[J]. J Hazard Mater, 2017, 321: 146-153.
[15] 魏小凡, 谢作明, 王晶, 等. 土著细菌胞外聚合物对浅层地下水系统中砷增强的生物指示[J]. 安全与环境工程, 2019, 26(5): 46-52.
[16] Yang Z, Wu Z, Liao Y, et al. Combination of microbial oxidation and biogenic schwertmannite immobilization: a potential remediation for highly arsenic-contaminated soil[J]. Chemosphere, 2017, 181: 1-8.
[17] 袁琦, 王玉珑, 韩俊源, 等. 羧甲基纤维素钠/己二酸二酰肼水凝胶的制备及其重金属离子吸附性能研究[J]. 中国造纸学报, 2021, 36(4): 38-47.
[18] Du F, Wang L, Yang Z, et at. Ionomic profile and arsenic speciation in Semisulcospira cancellata, a freshwater shellfish from a mine-impacted river in China[J]. Environ Sci Pollut Res Int, 2019, 26(10): 10148-10158.
[19] Puopolo R, Gallo G, Mormone A, et al. Identification of a New Heavy-Metal-Resistant Strain of Geobacillus stearothermophilus Isolated from a Hydrothermally Active Volcanic Area in Southern Italy[J]. Int J Environ Res Public Health, 2020, 17(8): 2678.
[20] Du F, Wang L, Yang Z,et al. Ionomic profile and arsenic speciation in Semisulcospira cancellata, a freshwater shellfish from a mine-impacted river in China[J].Environ Sci Pollut Res Int, 2019, 26(10): 10148-10158.
[21] 王姣. 湖南石门雄黄矿区好氧砷还原菌的筛选及其砷还原特征的研究[D]. 咸阳: 西北农林科技大学, 2018.
[22] Fathollahi A, Khasteganan N, Coupe SJ, et al. A meta-analysis of metal biosorption by suspended bacteria from three phyla[J]. Chemosphere, 2021, 268: 129290.
Outlines

/