[1] Lochhead JJ, Yang J, Ronaldson PT, et al. Structure, function, and regulation of the blood-brain barrier tight junction in central nervous system disorders[J]. Front Physiol, 2020, 11: 914.
[2] Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition[J]. Semin Cell Dev Biol, 2014, 36: 157-165.
[3] Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions[J]. J Cell Biol, 2015, 209(4): 493-506.
[4] Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer′s disease and other disorders[J]. Nat Rev Neurosci, 2011, 12(12): 723-738.
[5] Zhao Z, Nelson AR, Betsholtz C, et al. Establishment and dysfunction of the blood-brain barrier[J]. Cell, 2015, 163(5): 1064-1078.
[6] Nguyen YTK, Ha HTT, Nguyen TH, et al. The role of SLC transporters for brain health and disease[J]. Cell Mol Life Sci : CMLS, 2021, 79(1): 20.
[7] Wang W, Bodles-Brakhop AM, Barger SW. A role for p-glycoprotein in clearance of alzheimer amyloid β -peptide from the brain[J]. Curr Alzheimer Res, 2016, 13(6): 615-620.
[8] Liu JY, Thom M, Catarino CB, et al. Neuropathology of the blood-brain barrier and pharmaco-resistance in human epilepsy[J]. Brain, 2012, 135(Pt 10): 3115-3133.
[9] Aronica E, Sisodiya SM, Gorter JA. Cerebral expression of drug transporters in epilepsy[J]. Adv Drug Deliv Rev, 2012, 64(10): 919-929.
[10] Feldmann M, Asselin MC, Liu J, et al. P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study[J]. Lancet Neurol, 2013, 12(8): 777-785.
[11] Rambeck B, Jürgens UH, May TW, et al. Comparison of brain extracellular fluid, brain tissue, cerebrospinal fluid, and serum concentrations of antiepileptic drugs measured intraoperatively in patients with intractable epilepsy[J]. Epilepsia, 2006, 47(4): 681-694.
[12] Zhang C, Kwan P, Zuo Z, et al. In vitro concentration dependent transport of phenytoin and phenobarbital, but not ethosuximide, by human P-glycoprotein[J]. Life Sci, 2010, 86(23-24): 899-905.
[13] Garg N, Joshi R, Bhatia A, et al. Study of fingolimod, nitric oxide inhibitor, and p-glycoprotein inhibitor in modulating the P-glycoprotein expression via an endothelin-sphingolipid pathway in an animal model of pharmacoresistant epilepsy[J]. Indian J Pharmacol, 2023, 55(5): 307-314.
[14] Cornford EM, Hyman S, Cornford ME, et al. Interictal seizure resections show two configurations of endothelial Glut1 glucose transporter in the human blood-brain barrier[J]. J Cereb Blood Flow Metab, 1998, 18(1): 26-42.
[15] Lauritzen F, De Lanerolle NC, Lee TS, et al. Monocarboxylate transporter 1 is deficient on microvessels in the human epileptogenic hippocampus[J]. Neurobiol Dis, 2011, 41(2): 577-584.
[16] Römermann K, Helmer R, Löscher W. The antiepileptic drug lamotrigine is a substrate of mouse and human breast cancer resistance protein (ABCG2)[J]. Neuropharmacology, 2015, 93: 7-14.
[17] Van Vliet EA, Redeker S, Aronica E, et al. Expression of multidrug transporters MRP1, MRP2, and BCRP shortly after status epilepticus, during the latent period, and in chronic epileptic rats[J]. Epilepsia, 2005, 46(10): 1569-1580.
[18] Potschka H, Löscher W. Multidrug resistance-associated protein is involved in the regulation of extracellular levels of phenytoin in the brain[J]. Neuroreport, 2001, 12(11): 2387-2389.
[19] Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics-2020 update: a report from the american heart association[J]. Circulation, 2020, 141(9): e139-e596.
[20] Abdullahi W, Tripathi D, Ronaldson PT. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection[J]. Am J Physiol Cell Physiol, 2018, 315(3): C343-C356.
[21] Demars KM, Yang C, Hawkins KE, et al. Spatiotemporal changes in p-glycoprotein levels in brain and peripheral tissues following ischemic stroke in rats[J]. J Exp Neurosci, 2017, 11: 1179069517701741.
[22] Billington S, Salphati L, Hop C, et al. Interindividual and regional variability in drug transporter abundance at the human blood-brain barrier measured by quantitative targeted proteomics[J]. Clin Pharmacol Ther, 2019, 106(1): 228-237.
[23] Spudich A, Kilic E, Xing H, et al. Inhibition of multidrug resistance transporter-1 facilitates neuroprotective therapies after focal cerebral ischemia[J]. Nat Neurosci, 2006, 9(4): 487-488.
[24] Yano K, Takimoto S, Motegi T, et al. Role of p-glycoprotein in regulating cilnidipine distribution to intact and ischemic brain[J]. Drug Metab Pharmacokinet, 2014, 29(3): 254-258.
[25] Mehta DC, Short JL, Nicolazzo JA. Memantine transport across the mouse blood-brain barrier is mediated by a cationic influx H+ antiporter[J]. Mol Pharm, 2013, 10(12): 4491-4498.
[26] Stanton JA, Williams EI, Betterton RD, et al. Targeting organic cation transporters at the blood-brain barrier to treat ischemic stroke in rats[J]. Exp Neurol, 2022, 357: 114181.
[27] Abdullahi W, Brzica H, Hirsch NA, et al. Functional expression of organic anion transporting polypeptide 1a4 is regulated by transforming growth factor-β/activin receptor-like kinase 1 signaling at the blood-brain barrier[J]. Mol Pharmacol, 2018, 94(6): 1321-1333.
[28] Ose A, Kusuhara H, Endo C, et al. Functional characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs across the blood-brain barrier[J]. Drug Metab Dispos, 2010, 38(1): 168-176.
[29] Kilic E, Spudich A, Kilic U, et al. ABCC1: a gateway for pharmacological compounds to the ischaemic brain[J]. Brain, 2008, 131(Pt 10): 2679-2689.
[30] Abuznait AH, Kaddoumi A. Role of ABC transporters in the pathogenesis of Alzheimer′s disease[J]. ACS Chem Neurosci, 2012, 3(11): 820-831.
[31] Van Assema DM, Lubberink M, Rizzu P, et al. Blood-brain barrier p-glycoprotein function in healthy subjects and Alzheimer′s disease patients: effect of polymorphisms in the ABCB1 gene[J]. EJNMMI Res, 2012, 2(1): 57.
[32] Al Rihani SB, Lan RS, Kaddoumi A. Granisetron alleviates Alzheimer′s disease pathology in TgSwDI mice through calmodulin-dependent protein kinase II/cAMP-response element binding protein pathway[J]. J Alzheimers Dis, 2019, 72(4): 1097-1117.
[33] Tai LM, Loughlin AJ, Male DK, et al. P-glycoprotein and breast cancer resistance protein restrict apical-to-basolateral permeability of human brain endothelium to amyloid-beta[J]. J Cereb Blood Flow Metab, 2009, 29(6): 1079-1083.
[34] Xiong H, Callaghan D, Jones A, et al. ABCG2 is upregulated in Alzheimer′s brain with cerebral amyloid angiopathy and may act as a gatekeeper at the blood-brain barrier for Abeta(1-40) peptides[J]. J Neurosci , 2009, 29(17): 5463-5475.
[35] Krohn M, Lange C, Hofrichter J, et al. Cerebral amyloid-β proteostasis is regulated by the membrane transport protein ABCC1 in mice[J]. J Clin Invest, 2011, 121(10): 3924-3931.
[36] De Roeck A, Van Broeckhoven C, Sleegers K. The role of ABCA7 in Alzheimer′s disease: evidence from genomics, transcriptomics and methylomics[J]. Acta Neuropathol, 2019, 138(2): 201-220.
[37] Kim K, Lee SG, Kegelman TP, et al. Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics[J]. J Cell Physiol, 2011, 226(10): 2484-2493.
[38] Schallier A, Smolders I, Van Dam D, et al. Region- and age-specific changes in glutamate transport in the AβPP23 mouse model for Alzheimer′s disease[J]. J Alzheimers Dis, 2011, 24(2): 287-300.
[39] Lyros E, Bakogiannis C, Liu Y, et al. Molecular links between endothelial dysfunction and neurodegeneration in Alzheimer′s disease[J]. Curr Alzheimer Res, 2014, 11(1): 18-26.
[40] Szablewski L. Glucose Transporters in Brain: In Health and in Alzheimer′s Disease[J]. J Alzheimers Dis, 2017, 55(4): 1307-1320.
[41] Ochiai Y, Uchida Y, Tachikawa M, et al. Amyloid beta(25-35) impairs docosahexaenoic acid efflux by down-regulating fatty acid transport protein 1 (FATP1/SLC27A1) protein expression in human brain capillary endothelial cells[J]. J Neurochem, 2019, 150(4): 385-401.
[42] Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer′s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier[J]. J Clin Invest, 2000, 106(12): 1489-1499.
[43] Mceneny-King A, Edginton AN, Rao PP. Investigating the binding interactions of the anti-Alzheimer′s drug donepezil with CYP3A4 and P-glycoprotein[J]. Bioorg Med Chem Lett, 2015, 25(2): 297-301.
[44] Fernandes C, Martins C, Fonseca A, et al. PEGylated PLGA nanoparticles as a smart carrier to increase the cellular uptake of a coumarin-based monoamine oxidase b inhibitor[J]. ACS Appl Mater Interfaces, 2018, 10(46): 39557-39569.
[45] Vautier S, Milane A, Fernandez C, et al. Role of two efflux proteins, ABCB1 and ABCG2 in blood-brain barrier transport of bromocriptine in a murine model of MPTP-induced dopaminergic degeneration[J]. J Pharm Pharm Sci, 2009, 12(2): 199-208.
[46] Kim H, Shin JY, Lee YS, et al. Brain endothelial p-glycoprotein level is reduced in parkinson′s disease via a vitamin d receptor-dependent pathway[J]. Int J Mol Sci, 2020, 21(22):8538.
[47] Vanduyn N, Nass R. The putative multidrug resistance protein MRP-7 inhibits methylmercury-associated animal toxicity and dopaminergic neurodegeneration in Caenorhabditis elegans[J]. J Neurochem, 2014, 128(6): 962-974.
[48] Pan Y, Nicolazzo JA. Impact of aging, Alzheimer′s disease and Parkinson′s disease on the blood-brain barrier transport of therapeutics[J]. Adv Drug Deliv Rev, 2018, 135: 62-74.
[49] Huang L, Deng M, He Y, et al. β-asarone and levodopa co-administration increase striatal dopamine level in 6-hydroxydopamine induced rats by modulating p-glycoprotein and tight junction proteins at the blood-brain barrier and promoting levodopa into the brain[J]. Clin Exp Pharmacol Physiol, 2016, 43(6): 634-643.
[50] Liu Q, Hou J, Chen X, et al. P-glycoprotein mediated efflux limits the transport of the novel anti-Parkinson′s disease candidate drug FLZ across the physiological and PD pathological in vitro BBB models[J]. PLoS One, 2014, 9(7): e102442.