[1] Teo ZL,Tham YC,Yu M,et al.Global prevalence of diabetic retinopathy and projection of burden through 2045:systematic review and Meta-analysis [J].Ophthalmology,2021,128(11):1580-1591.
[2] Khan MAB, Hashim MJ, King JK,et al.Epidemiology of type 2 diabetes-global burden of disease and forecasted trends[J].J Epidemiol Glob Health, 2020,10(1):107-111.
[3] Feldman EL,Callaghan BC,Pop-Busui R,et al.Diabetic neuropathy[J].Nat Rev Dis Primers,2019,5(1):42.
[4] Hicks CW,Selvin E.Epidemiology of peripheral neuropathy and lower extremity disease in diabetes[J].Curr Diab Rep,2019,19(10):86.
[5] Xu Y,Zhou H,Zhu Q.The impact of microbiota-gut-brain axis on diabetic cognition impairment[J].Front Aging Neurosci,2017,9:106.
[6] 李仁实,韩晓琳,华梦羽,等.2型糖尿病认知障碍患者的磁共振成像研究进展[J].磁共振成像,2022,13(2):108-111,115.
[7] Milne NT,Bucks RS.Hippocampalatrophy,asymmetry,and cognition in type 2 diabetes mellitus[J].Brain Behav,2017,8(1):e00741.
[8] Li C,Li C,Yang Q,et al.Cortical thickness contributes to cognitive heterogeneity in patients with Type 2 diabetes mellitus[J].Medicine (Baltimore),2018,97(21):e10858.
[9] Sun DM,Ma Y,Sun ZB,et al.Decision-making in primary onset middle-age type 2 diabetes mellitus:a BOLD-fMRI study[J].Sci Rep,2017,7(1):10246.
[10] Xiong Y,Chen X,Zhao X,et al.Altered regional homogeneity and functional brain networks in Type 2 diabetes with and without mild cognitive impairment[J].Sci Rep,2020,10(1):21254.
[11] Chau ACM,Smith AE,Hordacre B,et al.A scoping review of resting-state brain functional alterations in Type 2 diabetes[J].Front Neuroendocrinol, 2022(65):100970.
[12] Qin D,Qian H.Analysis of RS-FMRI images clarifies brain alterations in type2 diabetes mellitus patients with cognitive impairment[J].J Mech Med Biol, 2021,21(5):25-36.
[13] Cheng P,Song S,Li Y,et al.Aberrant functional connectivity of the posterior cingulate cortex in Type 2 diabetes without cognitive impairment and microvascular complications[J].Front Endocrinol(Lausanne),2021,12:822861.
[14] Ogoh S.Relationship between cognitive function and regulation of cerebral blood flow[J].JPhysiol Sci,2017,67(3):345-351.
[15] Chau ACM,Cheung EYW,Chan KH,et al.Cheung.Impaired cerebral blood flow in type 2 diabetes mellitus-A comparative study with subjective cognitive decline, vascular dementia and Alzheimer’s disease subjects[J].NeuroImageClin, 2020,27:102302.
[16] Bhusal A,Rahman MH,Lee IK,et al.Role of hippocampal lipocalin-2 in experimental diabetic encephalopathy[J].Front Endocrinol (Lausanne),2019,10:25.
[17] 伍敏.小胶质细胞TREM2在糖尿病小鼠认知障碍中的作用及机制研究[D].重庆.重庆医科大学.2020.
[18] Jeong EA,Lee J,Shin HJ,et al.Tonicity-responsive enhancer-binding protein promotes diabetic neuroinflammation and cognitive impairment via upregulation of lipocalin-2[J].J Neuroinflammation,2021,18(1):278.
[19] Bhusal A,Rahman MH,Lee WH,et al.Satellite glia as a critical component of diabetic neuropathy:role of lipocalin-2 and pyruvate dehydrogenase kinase-2 axis in the dorsal root ganglion[J].Glia.2021,69(4):971-996.
[20] Xu T,Liu J,Li X.The mTOR/NF-κB pathway mediates neuroin flammation and synaptic plasticity in diabetic encephalopathy[J].Mol Neurobiol,2021,58(8):3848-3862.
[21] Pang X,Makinde EA,Eze FN,et al.Securidaca inappendiculate polyphenol rich extract counteracts cognitive deficits,neuropathy,neuroinflammation and oxidative stress in diabetic encephalopathic rats via p38 MAPK/Nrf2/HO-1 pathways[J].Front Pharmacol,2021,12:737764.
[22] Song Y,Ding W,Bei Y.Insulin is a potential antioxidant for diabetes-associated cognitive decline via regulating Nrf2 dependent antioxidant enzymes[J].Biomed Pharmacother,2018,104:474-484.
[23] Quincozes-Santos A,Bobermin LD,de Assis AM,et al.Fluctuations in glucose levels induce glial toxicity with glutamatergic,oxidative and inflammatory implications[J].BiochimBiophys Acta Mol Basis Dis,2017,1863(1):1-14.
[24] Pang X,Makinde EA,Eze FN,et al.Securidaca inappendiculata polyphenol rich extract counteracts cognitive deficits,neuropathy,neuroinflammation and oxidative stress in diabetic encephalopathic rats via p38 MAPK/Nrf2/HO-1 pathways[J].FrontPharmacol,2021,12:737764.
[25] 王中英,Fang Xiang.糖尿病脑病与胰岛素抵抗关系的研究进展[J].国际内分泌代谢杂志,2021,41(5):463-467.
[26] Akhtar A,Sah SP.Insulin signaling pathway and related molecules:role in neurodegenerationandAlzheimer's disease[J].Neurochem Int,2020,135:104707.
[27] Gasecka A,Siwik D,Gajewska M,et al.Early biomarkers of neurodegenerative and neurovascular disorders in diabetes[J].J Clin Med,2020,9(9):2807.
[28] Hackett AR,Strickland A,Milbrandt J.Disrupting insulin signaling in Schwann cells impairs myelination and induces a sensory neuropathy[J].Glia,2020,68(5):963-978.
[29] Di G,Zhao X,Qi X,et al.VEGF-B promotes recovery of corneal innervations and trophic functions in diabetic mice[J].Sci Rep,2017,7(6):40582.
[30] 《中国老年型糖尿病防治临床指南》编写组.中国老年2型糖尿病防治临床指南(2022年版)[J].中国糖尿病杂志,2022,30(1):2-51.
[31] Zhai Y,Meng X,Ye T,et al.Inhibiting the NLRP3 inflammasome activation with MCC950 ameliorates diabetic encephalopathy in db/db mice[J].Molecules,2018,23(3):522.
[32] Ye T,Meng X,Wang R,et al.Gastrodin alleviates cognitive dysfunction and depressive-like behaviors by inhibiting ER stress and NLRP3 inflammasome activation in db/db mice[J].Int J Mol Sci,2018,19(12):3977.
[33] YasinWayhs CA,Tannhauser Barros HM,VargasCR. GABAergic modulation in diabeticencephalopathy-related depression[J].Curr Pharm Des, 2015, 21(34):4980-4988.