[1] He L, Zhang SL Zhang XW, et al. Effects of insulin analogs and glucagon-like peptide-1 receptor agonists on proliferation and cellular energy metabolism in papillary thyroid cancer[J]. Onco Targets Ther, 2017, 10: 5621-5631.
[2] Kitada M, Ogura Y, Monno I, et al. Sirtuins and type 2 diabetes: role in inflammation, oxidative stress, and mitochondrial function[J]. Front Endocrinol (Lausanne), 2019, 10: 187.
[3] Chen C, Zhou M, Ge YC, et al. SIRT1 and aging related signaling pathways[J]. Mech Ageing Dev, 2020, 187: 111215.
[4] Ji J, Tao PY, Wang Q, et al. SIRT1: mechanism and protective effect in diabetic nephropathy[J]. Endocr Metab Immune Disord Drug Targets, 2021, 21(5): 835-842.
[5] Shen P, Deng X, Chen Z, et al. SIRT1: a potential therapeutic target in autoimmune diseases[J]. Front Immunol, 2021, 12: 779177.
[6] Kume S, Uzu T, Kashiwagi A, et al. SIRT1, a calorie restriction mimetic, in a new therapeutic approach for type 2 diabetes mellitus and diabetic vascular complications[J]. Endocr Metab Immune Disord Drug Targets, 2010, 10(1): 16-24.
[7] Ren WX, Chai MM, Jiang ML, et al. High glucose mediates apoptosis and osteogenesis of MSCs via downregulation of AKT-Sirt1-TWIST[J]. Mol Biol Rep, 2022, 49(4): 2723-2733.
[8] Ma FZ, Wu JD, Jiang ZP, et al. P53/NRF2 mediates SIRT1's protective effect on diabetic nephropathy[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(8): 1272-1281.
[9] Cao Y, Jiang XL, Ma HJ, et al. SIRT1 and insulin resistance[J]. J Diabetes Complications, 2016, 30(1): 178-183.
[10] Daitoku H, Sakamaki JI, Fukamizu A. Regulation of FoxO transcription factors by acetylation and protein–protein interactions[J]. Biochim Biophys Acta BBA Mol Cell Res, 2011, 1813(11): 1954-1960.
[11] Maiese K. FoxO transcription factors and regenerative pathways in diabetes mellitus[J]. Curr Neurovasc Res, 2015, 12(4): 404-413.
[12] Karbasforooshan H, Karimi G. The role of SIRT1 in diabetic cardiomyopathy[J]. Biomed Pharmacother, 2017, 90: 386-392.
[13] Yasuda I, Hasegawa K, Sakamaki Y, et al. Pre-emptive short-term nicotinamide mononucleotide treatment in a mouse model of diabetic nephropathy[J]. J Am Soc Nephrol, 2021, 32(6): 1355-1370.
[14] Soni SK, Basu P, Singaravel M, et al. Sirtuins and the circadian clock interplay in cardioprotection: focus on sirtuin 1[J]. Cell Mol Life Sci, 2021, 78(6): 2503-2515.
[15] Jaspers RT, Zillikens MC, Friesema ECH, et al. Exercise, fasting, and mimetics: toward beneficial combinations[J]. FASEB J, 2017, 31(1): 14-28.
[16] Yap KH, Yee GS, Candasamy M, et al. Catalpol ameliorates insulin sensitivity and mitochondrial respiration in skeletal muscle of type-2 diabetic mice through insulin signaling pathway and AMPK/SIRT1/PGC-1α/PPAR-γ activation[J]. Biomolecules, 2020, 10(10): 1360.
[17] Tran HT, Liong S, Lim R, et al. Resveratrol ameliorates the chemical and microbial induction of inflammation and insulin resistance in human placenta, adipose tissue and skeletal muscle[J]. PLoS One, 2017, 12(3): e0173373.
[18] Singh R, Chandel S, Dey D, et al. Epigenetic modification and therapeutic targets of diabetes mellitus[J]. Biosci Rep, 2020, 40(9): BSR20202160.
[19] Park HS, Lim JH, Kim MY, et al. Resveratrol increases AdipoR1 and AdipoR2 expression in type 2 diabetic nephropathy[J]. J Transl Med, 2016, 14(1): 176.
[20] Qiao LP, Shao JH. SIRT1 regulates adiponectin gene expression through Foxo1-C/enhancer-binding protein alpha transcriptional complex[J]. J Biol Chem, 2006, 281(52): 39915-39924.
[21] Habtemichael EN, Li DT, Camporez JP, et al. Insulin-stimulated endoproteolytic TUG cleavage links energy expenditure with glucose uptake[J]. Nat Metab, 2021, 3(3): 378-393.
[22] Yaribeygi H, Sathyapalan T, Atkin SL, et al. Molecular mechanisms linking oxidative stress and diabetes mellitus[J]. Oxidative Med Cell Longev, 2020, 2020: 1-13.
[23] Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, et al. Cellular death, reactive oxygen species (ROS) and diabetic complications[J]. Cell Death Dis, 2018, 9(2): 119.
[24] 周海伦, 杨曼, 谭薇. SIRT1在糖尿病视网膜病变中的研究进展[J]. 现代医学, 2021, 49(9): 1116-1121.
[25] Liu SY, Zhang X, Sun ML, et al. FoxO3a plays a key role in the protective effects of pomegranate peel extract against amikacin-induced ototoxicity[J]. Int J Mol Med, 2017, 40(1): 175-181.
[26] Zhang Q, Lenardo MJ, Baltimore D. 30 years of NF-κB: a blossoming of relevance to human pathobiology[J]. Cell, 2017, 168(1/2): 37-57.
[27] Wang F, Shang Y, Zhang R, et al. A SIRT1 agonist reduces cognitive decline in type 2 diabetic rats through antioxidative and anti-inflammatory mechanisms[J]. Mol Med Rep, 2019, 19(2): 1040-1048.
[28] Sun HJ, Xiong SP, Cao X, et al. Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3[J]. Redox Biol, 2021, 38: 101813.
[29] Meyerovich K, Ortis F, Cardozo AK. The non-canonical NF-κB pathway and its contribution to β-cell failure in diabetes[J]. J Mol Endocrinol, 2018, 61(2): F1-F6.
[30] Kim KE, Kim H, Heo RW, et al. Myeloid-specific SIRT1 deletion aggravates hepatic inflammation and steatosis in high-fat diet-fed mice[J]. Korean J Physiol Pharmacol, 2015, 19(5): 451-460.
[31] Gillum MP, Kotas ME, Erion DM, et al. SirT1 regulates adipose tissue inflammation[J]. Diabetes, 2011, 60(12): 3235-3245.
[32] Tchetina EV, Markova GA, Sharapova EP. Insulin resistance in osteoarthritis: similar mechanisms to type 2 diabetes mellitus[J]. J Nutr Metab, 2020, 2020: 4143802.
[33] Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement[J]. Redox Biol, 2020, 37: 101674.
[34] Ding MG, Feng N, Tang DS, et al. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway[J]. J Pineal Res, 2018, 65(2): e12491.
[35] Verma SK, Garikipati VNS, Kishore R. Mitochondrial dysfunction and its impact on diabetic heart[J]. Biochim Biophys Acta BBA Mol Basis Dis, 2017, 1863(5): 1098-1105.
[36] Noshiro M, Kawamoto T, Nakashima A, et al. DEC1 regulates the rhythmic expression of PPARγ target genes involved in lipid metabolism in white adipose tissue[J]. Genes Cells, 2020, 25(4): 232-241.
[37] Mayoral R, Osborn O, Mcnelis J, et al. Adipocyte SIRT1 knockout promotes PPARγ activity, adipogenesis and insulin sensitivity in chronic-HFD and obesity[J]. Mol Metab, 2015, 4(5): 378-391.
[38] Hui XY, Zhang ML, Gu P, et al. Adipocyte SIRT1 controls systemic insulin sensitivity by modulating macrophages in adipose tissue[J]. EMBO Rep, 2017, 18(4): 645-657.
[39] Xu F, Burk D, Gao ZG, et al. Angiogenic deficiency and adipose tissue dysfunction are associated with macrophage malfunction in SIRT1-/-mice[J]. Endocrinology, 2012, 153(4): 1706-1716.
[40] Qiang L, Wang LH, Kon N, et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of pparγ[J]. Cell, 2012, 150(3): 620-632.
[41] Liu Y, Dentin R, Chen D, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange[J]. Nature, 2008, 456(7219): 269-273.
[42] Sasaki M, Sasako T, Kubota N, et al. Dual regulation of gluconeogenesis by insulin and glucose in the proximal tubules of the kidney[J]. Diabetes, 2017, 66(9): 2339-2350.
[43] Xu JY, Li Y, Lou MD, et al. Baicalin regulates SirT1/STAT3 pathway and restrains excessive hepatic glucose production[J]. Pharmacol Res, 2018, 136: 62-73.