Objective: To study the relationship between serum monocyte chemoattractant protein-1 (MCP-1) and NOD-like receptor protein 3 (NLRP3) inflammasome expression and intestinal flora in elderly hypertensive patients. Method: A total of 84 elderly patients with essential hypertension admitted to our hospital from January 2019 to January 2021 were selected. According to the 2018 European Hypertension Guidelines, all patients with hypertension were divided into extremely high-risk group (28 cases), high-risk group (38 cases) and low-medium-risk group (18 cases). The intestinal flora and serum levels of MCP-1 and NLRP3 inflammasome were detected.Results: There were significant differences in blood pressure, serum creatinine and clinical complications among the three groups (P<0.05), and there were no significant differences in the other indicators of the patients (P>0.05). The levels of intestinal bifidobacteria and lactobacilli in the subjects of the extremely high-risk group were lower than those in the high-risk group and low-medium-risk group (P<0.05); and the levels of Bacteroides, Enterococcus and Escherichia coli in the extremely high-risk group were higher than those in the the high-risk group and the low-medium-risk group were high (P<0.05); while the levels of intestinal bifidobacteria, Lactobacillus, Bacteroides, enterococci and Escherichia coli were similar in the high-risk and low-medium-risk group (P>0.05). The serum levels of MCP-1 and NLRP-3 in the extremely high-risk group were higher than in the high-risk group and the low-medium-risk group (P<0.05), and the serum levels of MCP-1 and NLRP-3 in the high-risk group were higher than those in the low-medium-risk group (P<0.05). Pearson correlation analysis showed that MCP-1 level in patients was negatively correlated with intestinal bifidobacteria and Lactobacillus content in patients with hypertension, and was positively correlated with Bacteroides, Enterococcus and Escherichia coli (P<0.05). The level of NLRP3 was negatively correlated with the content of intestinal bifidobacteria and Lactobacillus in patients with hypertension, and positively correlated with Bacteroides, Enterococcus and Escherichia coli.Conclusion: The intestinal flora of elderly hypertensive patients is out of balance, and the serum levels of MCP-1 and NLRP-3 are correlated with the intestinal flora.
[1] Chen C, Wang X, Chen XY, et al. Disparities between Asian and non-Asian thrombolyzed acute ischemic stroke patients in the enhanced control of hypertension and thrombolysis stroke trial[J]. Cerebrovasc Dis Basel Switz, 2021, 50(5): 560-566.
[2] Kjeldsen SE, Os I.Assessing hypertension therapies: randomization or confounding by indication[J]. Nat Rev Cardiol, 2020, 17(2): 73-74.
[3] Xu C. The Elabela in hypertension,cardiovascular disease,renal disease,and preeclampsia: an update[J]. Hypertens, 2021, 39(1): 12-22.
[4] 朱强, 刘华光. 肠道微生态系统与肠道黏膜屏障[J]. 山东医药, 2011(35): 100.
[5] Wcpm A, Lb B, Hija C, et al. The effect of pre-analytical handling on the stability of fractalkine, monocyte chemoattractant protein 1(MCP1), interleukin 6 and interleukin 8 in samples of human cerebrospinal fluid[J]. J Immunol Methods, 2021, 494: 113057.
[6] 朱新华, 吕忠英, 李霞. 血清NLRP3炎性小体在高血压病人中的表达水平及临床意义[J].中西医结合心脑血管病杂志, 2020, 18(6): 951-954.
[7] 何兰, 宋文婷, 段作文, 等. 微生物代谢产物影响肠道微生态系统的研究进展[J]. 食品工业科技, 2020, 41(6): 360-365.
[8] 王淙玉, 王琳, 杨芾, 等. 肠道菌群参与高血压形成机制的研究进展[J]. 心肺血管病杂志, 2020, 39(4): 485-488.
[9] 陈维玉, 陈扬平, 冯婷, 等. 不同心血管危险分层高血压患者肠道菌群多样性分析[J].实用医学杂志, 2019, 35(9): 1415-1420.
[10] 李棣文, 刘育. 肠道菌群代谢产物短链脂肪酸调节血压的可能机制及作为靶点防治高血压的研究进展[J].中国医药, 2020, 15(11): 1804-1806.
[11] 马青山, 张瑞涛, 王长法, 等. 肠道菌群及其功能代谢物对脂肪代谢及肌内脂肪沉积影响的研究进展[J]. 畜牧兽医学报, 2020, 51(12): 13.
[12] 喻静, 彭红英. 肠道菌群介导的免疫反应与高血压和慢性肾脏病的关系研究进展[J].解放军医学杂志, 2021, 46(9): 865-870.
[13] 唐晓婷, 熊敏琪, 崔金刚, 等. 清肝益肾祛风复方对高血压肠道菌群失调的干预效应研究[J]. 现代中西医结合杂志, 2021, 30(31): 3421-3425, 3430.
[14] 李文俊, 杨云红, 谢灵芝, 等. 高血压与肠道菌群及其代谢物的相关性及机制研究[J]. 中国心血管病研究, 2020, 18(5): 455-459.
[15] 康国彬, 李真, 苗华为, 等. 肠道菌群代谢产物短链脂肪酸与高血压的关系和机制[J]. 中华高血压杂志, 2021, 29(8): 718-722.
[16] 马淮滨, 张冉. 早期肠内营养对高血压脑出血患者肠道菌群、营养指标及神经功能的影响[J]. 中国现代医学杂志, 2021, 31(12): 83-86.
[17] 霍星宇, 耿婕. 肠道菌群及其代谢产物与心血管疾病关系的研究进展[J]. 天津医药, 2020, 48(5): 460-464.
[18] 曹玉, 王立玉, 刘睿斯, 等. 基于肠道菌群探讨中医药防治心血管疾病的作用机制[J].中医药信息, 2019, 36(5): 52-56.
[19] 蔡雅卫, 李建辉, 叶森森, 等. 老年2型糖尿病合并高血压患者肠道微生物分布与估算肾小球滤过率的关系[J]. 浙江医学, 2019, 41(19): 2067-2071.
[20] 景欣悦, 傅淑平, 朱冰梅. 基于肠道菌群-脂肪轴探讨针刺在促进白色脂肪棕色化中的作用[J]. 中华中医药杂志, 2021, 36(2): 1136-1138.
[21] Meneses C, Pizzatto LN, Andrade F, et al. Prostaglandin E2 affects interleukin 6 and monocyte chemoattractant protein 1/CCL2 production by cultured stem cells of apical papilla[J]. J Endod, 2020, 46(3): 413-418.
[22] Tam F, Ong A. Renal monocyte chemoattractant protein-1: an emerging universal biomarker and therapeutic target for kidney diseases[J]. Nephrol Dial Transplant, 2019, 35(2): 198-203.
[23] Tsuchiyama T, Nakamoto Y, Sakai Y, et al. Prolonged, NK cell-mediated antitumor effects of suicide gene therapy combined with monocyte chemoattractant protein-1 against hepatocellular carcinoma[J]. J Immunol, 2007, 178(1): 574-583.
[24] Kerget B, Araz O, Erdem HB, et al. The frequency of monocyte chemoattractant protein-1 gene polymorphism in obstructive sleep apnea syndrome[J]. Lung, 2019, 197(5): 585-592.
[25] Koh KK, Son JW, Ahn JY, et al. Simvastatin combined with ramipril treatment in hypercholesterolemic patients[J]. Hypertension, 2004, 44(2): 180-185.
[26] Gu CM, Liu SM, Wang HY, et al. Role of the thioredoxin interacting protein in diabetic nephropathy and the mechanism of regulating NOD?like receptor protein 3 inflammatory corpuscle[J]. Int J Mol Med, 2019, 43(6): 2440-2450.
[27] Qian AY, Xu JF, Wu CS, et al. Hypothermia inhibits cerebral necroptosis and NOD-like receptor pyrin domain containing 3 pathway in a swine model of cardiac arrest[J]. J Surg Res, 2019, 244(12): 468-476.
[28] 翟昌明, 鲁放, 张双, 等. 三草降压汤对自发性高血压大鼠心脏NF-κB/NLRP3/IL-1β信号通路的影响[J]. 环球中医药, 2019, 12(8): 1143-1148.
[29] 裴艳芳, 曹彦, 王惠芳, 等. 热打击诱导血管内皮细胞NOD样受体蛋白3信号通路激活可被丙酮酸乙酯抑制[J]. 中华危重病急救医学, 2020, 32(11): 1367-1371.