A network pharmacology-based approach to predict anti-influenza A mechanism of Punica granatum L. and preliminary pharmacodynamic validation

  • XING Yadong ,
  • YANG Bing ,
  • DING Qi ,
  • LUO Kaiwen
Expand
  • 1. School of Pharmacy, Bengbu Medical College, Bengbu 233030, China;
    2. School of Pharmacy, Hebei University

Received date: 2023-09-01

  Online published: 2024-01-09

Abstract

Objective: To explore the potential effective targets and mechanism of Punica granatum L. against influenza based on network pharmacology and verify them with animal model. Methods: The active components in Punica granatum L. were retrieved by Chinese Medicine System Pharmacology Platform (TCMSP), and active targets were screened. The Cytoscape software was used to construct network of Punica granatum L. for influenza treatment. The targets of influenza A were screened through databases such as TTD and DRUGBANK. STRING database was used to construct the network of influenza A, and the biological function annotation and pathway analysis of key targets were performed. Mice of experimental model were infected with influenza A. The expression of key proteins and inflammatory factors of IL-17 pathway was detected by ELISA and Western blot. The body weight and lung index of mice were detected. Results: There were 7 active components in Punica granatum L. against influenza A and 96 effective targets. Among them, RELA, MAPK1, JUN, HIF1A, ESR1, NFKBIA and TP53 genes may be the core targets. The possible mechanism of action may be related to IL-17 signaling pathway, chemical carcinogenic-receptor activation, phosphatidylinositol 3-kinase pathway, etc. Preliminary animal experiments showed that Punica granatum L. extracts were involved in the regulation of IL-17 pathway to inhibit the expression of inflammatory cytokines IL-6, TNF-α, IL-1β and TRAF6, NF-κB protein (P<0.05). Conclusion: There are 6 components contained in Punica granatum L. interacting with different targets and pathways to inhibit the expression of proteins of multiple inflammatory cytokines to inhibit influenza A.

Cite this article

XING Yadong , YANG Bing , DING Qi , LUO Kaiwen . A network pharmacology-based approach to predict anti-influenza A mechanism of Punica granatum L. and preliminary pharmacodynamic validation[J]. Journal of Baotou Medical College, 2024 , 40(1) : 13 -20 . DOI: 10.16833/j.cnki.jbmc.2024.01.003

References

[1] 刘海, 蒋淼, 杜丹, 等. 石榴的本草考证[J]. 中药与临床, 2014, 5(1): 40-45.
[2] 中国药典2020年版. 一部[S]. 2020: 487.
[3] 江苏新医学院. 中药大辞典[M]. 上册. 上海科学技术出版社, 1991: 284.
[4] 郭海茹, 朱芳娟, 李龙根, 等. 石榴皮化学成分研究[J]. 云南农业大学学报(自然科学), 2019, 34(2): 362-369.
[5] 马梅芳, 张丹丹, 张波. 石榴籽化学成分及药理作用研究进展[J]. 食品与药品, 2020, 22(5): 434-437.
[6] Dananche C, Sanchez PV, Benet T, et al. Burden of influenza in less than 5 year-old children admitted to hospital with Pneumonia in developing and emerging countries: a descriptive, multicenter study[J]. Am J Trop Med Hyg, 2018, 98(6): 1805-1810.
[7] Fu XF, Zhou YQ, Wu J, et al. Clinical characteristics and outcomes during a severe influenza season in China during 2017-2018[J]. BMC Infect Dis, 2019, 19(1): 668-670.
[8] 袁明, 孙蓉, 刘长青, 等. 抗流感病毒药物研究进展[J]. 赤峰学院学报(自然科学版), 2020, 36(12): 48-53.
[9] 颜海燕, 王萌, 王辉强, 等. 复方鱼腥草合剂体外抗流感病毒作用研究[J]. 药学学报,2021, 56(5): 1409-1415.
[10] 张波, 周芳亮, 卢芳国, 等. 96种中药材对流感病毒神经氨酸酶活性的影响[J]. 中华中医药杂志, 2014, 29(9): 2788-2794.
[11] 孙诗艺, 颜炎, 吴子轩, 等. 基于网络药理学和分子对接技术分析健脾活骨方治疗股骨头坏死的作用机制[J]. 中药新药与临床药理, 2022, 33(10): 1357-1365.
[12] 孙建辉, 郝莉雨, 李宗源, 等. 小儿风热清合剂(口服液)对流感病毒致小鼠病毒性肺炎的影响[J]. 中草药, 2022, 53(9): 2740-2746.
[13] 邹敏, 谢彩英, 甘娜. 壮药龙盘止咳方治疗小鼠甲型流感病毒H1N1肺炎的作用及机制[J]. 中国病理生理杂志, 2022, 38(3): 526-534.
[14] Ambavade SD, Misar AV, Ambavade PD. Pharmacological, nutritional, and analytical aspects of β-sitosterol: a review[J]. Oriental Pharm Exp Med, 2014, 14(3): 193-211.
[15] 柳月霞, 魏菊红, 刘小丽. β-谷甾醇对高糖诱导的人脐静脉内皮细胞损伤的抑制作用[J]. 中国组织化学与细胞化学杂志, 2020, 29(6): 509-513.
[16] 林英卓, 黄文青, 杜荣国. 儿茶素对重症急性胰腺炎大鼠肠黏膜屏障功能的保护作用[J]. 国际中医中药杂志, 2013, 35(11): 357-363.
[17] 华云玮, 朱凌宇, 林俊儒. 4种不同中药单体对诺如病毒感染性肠炎小鼠细胞TNF-α、IL-1β、IL-6水平及PKR/p-PKR影响[J]. 辽宁中医药大学学报, 2021, 23(6): 24-27.
[18] Afaq F,Malik A,Syed D,et al.Pomegranate fruit extract modulates UV-B-mediated phosphorylation mitogen-activated protein kinases and activation of Nuclear factor kappa B in normal human epidermal keratinocytespara graph sign[J]. Photochem Photobiol, 2005, 81(1): 38-45.
[19] Rho HS, Ghimeray AK, Yoo DS, et al. Kaempferol and kaempferol rhamnosides with depigmenting and antiinflammatory properties[J]. Molecules, 2011, 16(4): 3338-3344.
[20] 张丽阳, 孙军, 陈迪. 山奈酚抑制脑缺血/再灌注大鼠的脑损伤、炎症、氧化应激和凋亡[J]. 中国组织化学与细胞化学杂志, 2022, 31(4): 381-386.
[21] Zuo T, Yue YZ, Wang XH, et al. Luteolin relieved DSS-induced colitis in mice via HMGB1-TLR-NF-κB signaling pathway[J]. Inflammation, 2020, 44(24): 1-10.
[22] 邓东沅, 顾立刚, 刘晓婷, 等. 木樨草素体外对H1N1感染A549诱导凋亡的干预作用及机制[J]. 中华中医药杂志, 2017, 32(4): 1524-1527.
[23] 周霄楠, 韩超, 宋鹏琰, 等. 木樨草素和槲皮素体外抗炎作用研究[J]. 动物医学进展, 2017, 38(10): 56-61.
[24] 司丽君, 王雪, 王林, 等. 槲皮素的抗炎免疫及部分机制研究[J]. 中国医药导报, 2021, 18(27): 26-29, 34
[25] Luo FB, Shi J, Shi QQ, et al. Mitogen-activated protein kinases and hypoxic/ischemic nephropathy[J]. Cell Physiol Biochem, 2016, 39(3): 1051-1067.
[26] Ye N, Ding Y, Wild C, et al. Small molecule inhibitors targeting activator protein 1 (AP-1)[J]. Med Chem, 2014, 57: 6930-6948.
[27] 欧阳洋, 李娟娟, 涂毅, 等. HIF1A可作为乳腺癌的预后标志物且与免疫细胞浸润相关[J]. 中国肿瘤生物治疗杂志, 2022, 29(4): 317-326.
[28] 赖红梅. NFKBIA、NFKB1基因多态性与冠心病及血浆IL-6水平相关性研究[D]. 乌鲁木齐:新疆医科大学, 2016: 8.
Outlines

/