Objective: To explore the main active components and drug targets of Mongolian medicine Erdun-Wurile in the treatment of Parkinson’s disease and its potential action mechanism based on the network pharmacology, and study the binding ability of drugs and target proteins with molecular docking. Methods: The active components and corresponding targets of Eerdun-Wurile were mined based on the traditional Chinese medicine systems pharmacology database and analysis platform, TCMCSP). The mined data were screened under the term of pharmacokinetic parameters [oral bioavailability (OB)≥30%, drug-likeness property (DL)≥0.18]. GeneCards, OMIM and TTD databases of human gene-disease related databases were used to screen out the possible targets in active components of Eerdun-Wurile in the treatment of Parkinson’s disease. The Venn diagram was drawn by Cytoscape 3.9.1, and PPI network diagram was drawn with STRING database. The Bioinformatics and Metascape database were used to search the potential active ingredients of Erden-Wurile and potential targets for the treatment of Parkinson’s disease, and GO function analysis and KEGG enrichment analysis was performed on screened targets with molecular docking of small drug molecules and target proteins. Results: 118 kinds of active ingredients with good DL and oral absorption were screened from Eerdun-Wurile medicine, and 207 targets were predicted to treat Parkinson’s disease. GO function analysis and KEGG enrichment analysis showed that the mechanism of Mongolian medicine Eerdun-Wurile in treating Parkinson’s disease mainly involved with biological processes such as positive regulation of RNA polymerase II promoter transcription, positive regulation of DNA template transcription, positive regulation of gene expression. Pathways involved were AKT1, TP53, TNF, VEGFA, CASP3, etc. Conclusion: The effect of Mongolian medicine Eerdun-Wurile in treating Parkinson’s disease is the action result of multi-components, multi-targets and multi-channels, which provides theoretical basis for further research on treating Parkinson’s disease with Eerdun-Wurile.
LI Xiaofeng
,
LIN Yufeng
,
ZHANG Yabei
,
CHEN Xianghui
,
ZHAO Rui
,
ZHU Wei
,
XIE Yabin
,
XIE Wei
,
BADE Rengui
,
JIANG Shuyuan
,
LIU Xiaolei
,
SHAO Guo
,
BAI Haihua
,
JIA Xiaoe
,
YANG Zhifu
. Study on the mechanism of Mongolian medicine Erdun-Wurile on Parkinson’s disease based on network pharmacology and molecular docking[J]. Journal of Baotou Medical College, 2024
, 40(1)
: 1
-7
.
DOI: 10.16833/j.cnki.jbmc.2024.01.001
[1] 陈生弟. 中国帕金森病治疗指南(第三版). 江西省第七次中西医结合神经科学术交流会[C]. 江西:南昌, 2015.
[2] 宝莉莉, 宋福顺, 都格尔, 等. 蒙药额尔敦-乌日勒的研究进展[J]. 中国民族民间医药, 2019, 28(3): 53-56.
[3] 其布日. 额尔敦-乌日勒的活性成分分析及其对小胶质细胞基因调控作用的研究[D]. 呼和浩特:内蒙古大学, 2021.
[4] 王洪亮, 敖其尔, 特木其乐. 彻彻热乎病(帕金森病)蒙医西医诊治进展[J]. 中国民族医药杂志, 2020, 26(12): 57-59.
[5] 小梅, 特木其乐, 初拉, 等. 基于蒙医白脉理论探析帕金森病[J]. 世界科学技术-中医药现代化, 2022, 24(1): 143-148.
[6] 初拉. 额尔敦乌日勒提取物对神经细胞的保护作用及其促进神经细胞突起生长作用的研究[D]. 呼和浩特:内蒙古医科大学, 2019.
[7] 网络药理学评价方法指南[J]. 世界中医药, 2021, 16(4): 527-532.
[8] 云学英, 陈其秀, 佟杰, 等. 蒙药珍宝丸Ⅱ,Ⅲ中黄酮类化合物含量分析[J]. 光谱学与光谱分析, 2004, (1): 89-91.
[9] 余潇苓, 方翠芬, 祝明. 高效液相色谱法测定珍宝丸中栀子苷含量[J]. 中国药业, 2009, 18(5): 18-19.
[10] 李佳林, 章金凤. HPLC法测定蒙药珍宝丸桂皮醛含量[J]. 中国民族医药杂志, 2011, 17(5): 47-48.
[11] 于凯, 卜凡, 李鹏, 等. 基于网络药理学和分子对接探讨蒙药额尔敦-乌日勒治疗癫痫的潜在作用机制[J]. 亚太传统医药, 2022, 18(2): 198-204.
[12] 骆晓峰, 李瑶, 胡江, 等. 栀子苷对实验性帕金森病大鼠睡眠障碍的调节作用及其机制[J]. 吉林大学学报(医学版), 2020, 46(6): 1177-1181.
[13] 郭建友, 杨元霄, 赵保胜, 等. 桂皮醇对IL-1刺激脑微血管内皮细胞COX活性及PGE_2释放的影响[J]. 中国药学杂志, 2006, (8): 596-599.
[14] 莲花. 额尔敦—乌日勒对MCAO/R损伤大鼠海马及皮质神经营养因子的影响[D]. 北京:北京中医药大学, 2014.
[15] 萨仁高娃. 额尔敦—乌日勒有效成分的分析及其对脑神经细胞基因表达调控的研究[D]. 北京:北京中医药大学, 2018.
[16] 李筱媛. TLR2介导AKT1信号通路基因多态性与汉族散发性帕金森病的关系[D]. 青岛:青岛大学, 2017.
[17] 陈锋, 朱明慧, 韩燕银, 等. 帕金森病与动脉粥样硬化的相关性研究[J]. 世界最新医学信息文摘, 2019, 19(42): 103-105.
[18] 高崚, 陈王璐, 陈奕奕, 等. 针灸对帕金森病小鼠黑质白细胞介素-17受体A/核因子κB信号通路的影响[J]. 世界中医药, 2022, 17(18): 2580-2586.
[19] Sommer A, Marxreiter F, Krach F, et al. Th17 lymphocytes induce neuronal cell death in a human iPSC-based model of parkinson’s disease[J]. Cell Stem Cell, 2018, 23(1): 123-131 e6.
[20] Shimoke K, Chiba H. Nerve growth factor prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced cell death via the Akt pathway by suppressing caspase-3-like activity using PC12 cells: relevance to therapeutical application for parkinson’s disease[J]. Journal of Neuroscience Research, 2001, 63(5): 402-409.
[21] 刘晓芳. Orai1介导PI3K/Akt/NF-κB信号通路在帕金森病中调控神经炎症的研究[D]. 太原:山西医科大学, 2022.
[22] 曹媛媛, 孙灵芝. 帕金森病和丝裂原活化蛋白激酶信号通路的相关性及中医药干预作用[J]. 实用心脑肺血管病杂志: 1-6.
[23] 陈家隆. p38 MAPK在α-synuclein聚集诱导的线粒体和溶酶体功能异常的机制研究[D]. 广州:南方医科大学, 2019.
[24] 何建影. P38MAPK在PD认知障碍中作用的实验研究[D]. 昆明:昆明医科大学, 2019.