Objective: To timely assess the risk of incontinence-associated dermatitis (IAD) by constructing a nomogram-predicting model for the risk prediction of IAD in critically ill patients. Method: A total of 359 ICU patients in a tertiary hospital of integrated traditional Chinese and Western medicine were selected, and divided into the nonoccurrence group (n=257) and occurrence group (n=102) according to the IAD happens or not. Univariate and multivariable logistic regression analysis were used to analysis the risk factors for IAD. A nomogram-predicting model was build based on the logistic regression model by R software. Results: Five risk factors, including fever (P=0.001,OR=3.252), the double incontinence(P=0.001,OR=3.510), daily stool frequency(P<0.001,OR=2.987), PAT score(P=0.002,OR=1.268), and TCM syndrome differentiation nursing(P<0.001,OR=4.540), were taken to construct a nomogram-predicting model. The model displayed good discrimination with a C-index of 0.884 and good calibration, and the predicting probability of the model was consistent with the probability of occurrence of IAD. Decision curve analysis showed that the model was clinically useful. Conclusion: This nomogram-predicting model has satisfactory prediction by combining with the theory of TCM syndrome differentiation. The risk prediction can be completed at the beginning of ICU stay, which can provide reference for preventative treatment and nursing measures for high-risk patients.
HUANG Qionglei
,
JIN Ying
,
SHI Liangliang
,
LIU Min
. Establishment and validation of nomogram prediction model for incontinence-associated dermatitis risk in critically ill patients[J]. Journal of Baotou Medical College, 2023
, 39(11)
: 70
-74
.
DOI: 10.16833/j.cnki.jbmc.2023.11.014
[1] 史广玲, 徐建珍, 刘夕珍, 等. 重症监护病房患者大便失禁相关性皮炎预测风险模型的建立和验证[J]. 解放军护理杂志, 2021, 38(11): 37-40, 45.
[2] Van Damme N, Clays E, Verhaeghe S, et al. Independent risk factors for the development of incontinence-associated dermatitis (category 2) in critically ill patients with fecal incontinence: a cross-sectional observational study in 48 ICU units[J]. Int J Nurs Stud, 2018, 81: 30-39.
[3] 张煜, 刘均娥, 高凤莉, 等. 基于行动研究的ICU失禁性皮炎护理方案改进与实施[J]. 护理学杂志, 2019, 34(23): 36-40.
[4] 杨婷. 不同皮肤保护方案预防失禁相关性皮炎的效果及成本研究[D]. 南京: 南京中医药大学, 2019.
[5] Van Damme N, Van Den Bussche K, De Meyer D, et al. Independent risk factors for the development of skin erosion due to incontinence (incontinence-associated dermatitis category 2) in nursing home residents: results from a multivariate binary regression analysis[J]. Int Wound J, 2017, 14(5): 801-810.
[6] 黄华平, 何海燕, 陈斌, 等. 失禁性皮炎风险预测模型的构建及验证研究[J]. 中西医结合护理(中英文), 2019, 5(5): 1-5.
[7] 王泠, 郑小伟, 马蕊, 等. 国内外失禁相关性皮炎护理实践专家共识解读[J]. 中国护理管理, 2018, 18(1): 3-6.
[8] 徐艳, 王兰珍, 胡军. 重症脑卒中患者并发失禁相关性皮炎的影响因素研究[J]. 预防医学, 2017, 29(4): 330-333.
[9] Pather P, Doubrovsky A, Jack L, et al. Incontinence-associated dermatitis: who is affected[J]. J Wound Care, 2021, 30(4): 261-267.
[10] Kottner J, Beeckman D. Incontinence-associated dermatitis and pressure ulcers in geriatric patients[J]. G Ital Dermatol Venereol, 2015, 150(6): 717-729.
[11] 黄琼蕾, 金瑛. 危重症患者失禁性皮炎护理方法的效果与成本分析研究进展[J]. 中华急危重症护理杂志, 2021, 2(2): 167-170.
[12] Wei L, Bao YT, Chai QW, et al. Determining risk factors to develop a predictive model of incontinence-associated dermatitis among critically ill patients with fecal incontinence: a prospective, quantitative study[J]. Wound Manag Prev, 2019, 65(4): 24-33.
[13] Bender JK, Faergemann J, Sköld M. Skin health connected to the use of absorbent hygiene products: a review[J]. Dermatol Ther (Heidelb), 2017, 7(3): 319-330.
[14] 杨婷, 蒋琪霞, 俞惠, 等. 危重病人失禁相关性皮炎危险因素的Meta分析[J]. 护理研究, 2019, 33(20): 3478-3483.
[15] 郑怡群, 张慧娟, 周玉意. ICU患者失禁相关性皮炎现况调查及危险因素分析[J]. 中国护理管理, 2018, 18(4): 488-492.
[16] 鲍雨婷. 危重症患者便失禁性皮炎及与压疮发生相关性研究[D]. 天津: 天津医科大学, 2018.
[17] 张艳, 张延红, 王春华. 基于证据的成人ICU失禁相关性皮炎护理质量改进[J]. 中华护理教育, 2020, 17(3): 259-264.
[18] 赵艳霞, 王雅莉, 李彤彤, 等. 湿疹患者中医体质、辨证分型、西医分期的年发病次数分析[J]. 中国实验方剂学杂志, 2019, 25(6): 101-107.
[19] 张苍. 赵炳南辨治皮肤湿病理法探究[J]. 北京中医药, 2019, 38(11): 1059-1062.
[20] 李玮桐. 早产儿医用粘胶相关性皮肤损伤危险因素分析及其列线图的建立与评价[D]. 青岛: 青岛大学, 2019.
[21] 万刚. 局部晚期鼻咽癌新辅助化疗近期疗效相关因素及Nomograms预测模型的构建[D]. 南宁: 广西医科大学, 2016.
[22] Vickers AJ, Elkin EB. Decision curve analysis: a novel method for evaluating prediction models[J]. Med Decis Making, 2006, 26(6): 565-574.
[23] Rousson V, Zumbrunn T. Decision curve analysis revisited: overall net benefit, relationships to ROC curve analysis, and application to case-control studies[J]. BMC Med Inform Decis Mak, 2011, 11: 45.