[1] Shanaida M, Jasicka-Misiak I, Makowicz E, et al. Development of high-performance thin layer chromatography method for identification of phenolic compounds and quantification of rosmarinic acid content in some species of the Lamiaceae family[J]. J Pharm Bioallied Sci, 2020, 12(2): 139-145.
[2] Wu C, Liu HZ, Rong XJ, et al. Phytochemical composition profile and space-time accumulation of secondary metabolites for dracocephalum moldavica Linn. via UPLC-Q/TOF-MS and HPLC-DAD method[J]. Biomed Chromatogr, 2020, 34(8): e4865.
[3] 天亮, 吴香杰, 梦月. 蒙药材香青兰的化学成分研究进展[J]. 世界最新医学信息文摘, 2017, 17(14): 31, 37.
[4] 何陈林, 孟和毕力格, 王秀兰, 等. 蒙药材香青兰的研究概况[J]. 中国民族医药杂志, 2018, 24(10): 35-38.
[5] 杨丽娜, 邢建国, 何承辉, 等. 维药香青兰的化学成分与药理作用评价[J]. 世界临床药物, 2013, 34(4): 226-231.
[6] 阿衣努尔·热合曼, 麦路德木·麦麦吐逊, 热西旦木·托乎提, 等. 香青兰化学成分分离纯化及结构鉴定[J]. 新疆医科大学学报, 2011, 34(4): 366-369.
[7] 戴晓庆, 汪豪, 叶文才, 等. 维药香青兰叶的化学成分研究[J]. 药学与临床研究, 2010, 18(3): 267-268, 273.
[8] 宋睿, 金传山, 周亚伟. 香青兰中总黄酮和单体的含量测定[J]. 中国实验方剂学杂志, 2010, 16(12): 71-74.
[9] Martínez-Vázquez M, Estrada-Reyes R, Martínez-Laurrabaquio A, et al. Neuropharmacological study of Dracocephalum moldavica L. (Lamiaceae) in mice: sedative effect and chemical analysis of an aqueous extract[J]. J Ethnopharmacol, 2012, 141(3): 908-917.
[10] Hu L, Wu C, Zhang ZJ, et al. Pinocembrin protects against dextran sulfate sodium-induced rats colitis by ameliorating inflammation, improving barrier function and modulating gut microbiota[J]. Front Physiol, 2019, 10: 908.
[11] Goh KI, Cusick ME, Valle D, et al. The human disease network[J]. Proc Natl Acad Sci USA, 2007, 104(21): 8685-8690.
[12] Zhang RZ, Zhu X, Bai H, et al. Network pharmacology databases for traditional Chinese medicine: review and assessment[J]. Front Pharmacol, 2019, 10: 123.
[13] Wu JW, Wei ZH, Cheng P, et al. Rhein modulates host purine metabolism in intestine through gut microbiota and ameliorates experimental colitis[J]. Theranostics, 2020, 10(23): 10665-10679.
[14] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11:protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019, 47(D1): D607-D613.
[15] Jiang N, Li H, Sun YS, et al. Network pharmacology and pharmacological evaluation reveals the mechanism of the Sanguisorba officinalis in suppressing hepatocellular carcinoma[J]. Front Pharmacol, 2021, 12: 618522.
[16] Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources[J]. Nat Protoc, 2009, 4(1): 44-57.
[17] Zhang C, Jiang M, Lu AP. Considerations of traditional Chinese medicine as adjunct therapy in the management of ulcerative colitis[J]. Clin Rev Allergy Immunol, 2013, 44(3): 274-283.
[18] Zheng K, Shen H, Jia J, et al. Traditional Chinese medicine combination therapy for patients with steroid-dependent ulcerative colitis: study protocol for a randomized controlled trial[J]. Trials, 2017, 18(1): 8.
[19] 郭子霞, 张丹参, 李炜. 大黄对溃疡性结肠炎治疗作用研究进展[J]. 中国药理学与毒理学杂志, 2021, 35(9): 655.
[20] Li BL, Du PL, Du Y, et al. Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats[J]. Life Sci, 2021, 269: 119008.
[21] Sheng QS, Li F, Chen GP, et al. Ursolic acid regulates intestinal microbiota and inflammatory cell infiltration to prevent ulcerative colitis[J]. J Immunol Res, 2021, 2021: 6679316.
[22] Noviello D, Mager R, Roda G, et al. The IL23-IL17 immune axis in the treatment of ulcerative colitis: successes, defeats, and ongoing challenges[J]. Front Immunol, 2021, 12: 611256.
[23] Tatiya-Aphiradee N, Chatuphonprasert W, Jarukamjorn K. Immune response and inflammatory pathway of ulcerative colitis[J]. J Basic Clin Physiol Pharmacol, 2018, 30(1): 1-10.
[24] Yiu J HC, Dorweiler B, Woo CW. Interaction between gut microbiota and toll-like receptor: from immunity to metabolism[J]. J Mol Med, 2017, 95(1): 13-20.
[25] Price AE, Shamardani K, Lugo KA, et al. A map of toll-like receptor expression in the intestinal epithelium reveals distinct spatial, cell type-specific, and temporal patterns[J]. Immunity, 2018, 49(3): 560-575.
[26] Yan JB, Luo MM, Chen ZY, et al. The function and role of the Th17/treg cell balance in inflammatory bowel disease[J]. J Immunol Res, 2020, 2020: 8813558.
[27] Taylor CT, Colgan SP. Regulation of immunity and inflammation by hypoxia in immunological niches[J]. Nat Rev Immunol, 2017, 17(12): 774-785.
[28] Liu P, Lu ZW, Liu LL, et al. NOD-like receptor signaling in inflammation-associated cancers: from functions to targeted therapies[J]. Phytomedicine, 2019, 64: 152925.
[29] Platnich JM, Muruve DA. NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways[J]. Arch Biochem Biophys, 2019, 670: 4-14.
[30] Chen TL, Zhang XD, Zhu GL, et al. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro[J]. Medicine (Baltimore), 2020, 99(38): e22241.
[31] Graves DT, Milovanova TN. Mucosal immunity and the FOXO1 transcription factors[J]. Front Immunol, 2019, 10: 2530.
[32] Wang YL, Graves DT. Keratinocyte function in normal and diabetic wounds and modulation by FOXO1[J]. J Diabetes Res, 2020, 2020: 3714704.