中国医学论著

基于GEO数据库的阿尔茨海默病差异表达基因分析及治疗中药预测*

  • 刘艳云 ,
  • 唐晓伟 ,
  • 汪洋 ,
  • 曹明刚 ,
  • 周爱民 ,
  • 张娟
展开
  • 1.安徽中医药高等专科学校,安徽芜湖 241002;
    2.安徽中医药大学第一附属医院
张 娟

收稿日期: 2024-05-31

  网络出版日期: 2025-05-14

基金资助

国家自然科学基金项目(No.82274493);国家自然科学基金项目(No.81774299);安徽省教育厅2022年高等学校省级质量工程项目(No.2022cxtd083);安徽省教育厅2020年高等学校省级质量工程项目(No.2020jxtd151)

Analysis of differentially expressed genes of Alzheimer's disease based on GEO database and prediction of therapeutic chinese medicine

  • LIU Yanyun ,
  • TANG Xiaowei ,
  • WANG Yang ,
  • CAO Minggang ,
  • ZHOU Aimin ,
  • ZHANG Juan
Expand
  • 1. Anhui College of Chinese Medicine, Wuhu 241002, China;
    2. The First Affiliated Hospital of Anhui University of Chinese Medicine

Received date: 2024-05-31

  Online published: 2025-05-14

摘要

目的:通过生物信息学方法获得阿尔茨海默病(AD)的差异基因,预测治疗AD的潜在中药、成分及靶点。方法:从GEO数据库下载AD的基因芯片数据GSE129055,筛选数据集中的差异表达基因并对差异表达的mRNA进行基因本体功能(GO)及京都基因和基因组百科全书(KEGG)富集分析;通过TargetScan数据库预测miRNA的靶基因并构建miRNA-mRNA网络;将miRNA-mRNA网络中Degree值前50%的mRNA导入Coremine Medical平台筛选潜在治疗中药;TCMSP平台筛选潜在中药作用于差异表达mRNA的成分和靶点,二者结合构建中药治疗AD的药物-成分-mRNA-miRNA共表达网络并进行分子对接验证。结果:在GSE129055数据集中共筛选出178个差异表达mRNA,96个差异表达miRNA;通过筛选发现作用于差异表达mRNA的常用中药有人参、丹参、黄芩、冬虫夏草、五味子等,关键活性成分为左旋山槐素和β-谷甾醇,关键靶点为μ阿片受体基因(OPRM1)和5-羟色胺受体亚基3A阳性抑制性神经元(HTR3A),关键miRNA为miR-9-3p和miR-3607-3p;分子对接结果显示,关键活性成分能够分别与关键靶点结合并展现出较好的亲和力。结论:AD大鼠海马组织多种基因差异性表达,同时中药治疗AD具有多成分、多靶点的特点,可以通过影响神经肽、生物胺及减轻神经炎症等发挥神经保护作用。

本文引用格式

刘艳云 , 唐晓伟 , 汪洋 , 曹明刚 , 周爱民 , 张娟 . 基于GEO数据库的阿尔茨海默病差异表达基因分析及治疗中药预测*[J]. 包头医学院学报, 2025 , 41(4) : 16 -22 . DOI: 10.16833/j.cnki.jbmc.2025.04.004

Abstract

Objective:To obtain the differential genes of Alzheimer's disease (AD) by bioinformatics methods, and to predict the potential traditional Chinese medicines, components and targets for the treatment of AD. Methods: The AD gene chip data GSE129055 was downloaded from the GEO database. The differentially expressed genes in the data set were screened and the differentially expressed mRNAs were analyzed by gene ontology function (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The target genes of miRNAs were predicted by TargetScan database and the miRNA-mRNA network was constructed. The top 50% mRNA of Degree value in miRNA-mRNA network was imported into Coremine Medical platform to screen potential therapeutic Chinese medicine. The TCMSP platform was used to screen the components and targets of potential Chinese medicines acting on differentially expressed mRNAs. The two were combined to construct a drug-component-mRNA-miRNA co-expression network for Chinese medicine treatment of AD and molecular docking verification was performed. Results: A total of 178 differentially expressed mRNAs and 96 differentially expressed miRNAs were screened in the GSE129055 data set. Through screening, it was found that the commonly used traditional Chinese medicines acting on differentially expressed mRNAs were ginseng, salvia miltiorrhiza, scutellaria baicalensis, cordyceps sinensis, schisandra chinensis, etc. The key active ingredients were levoshansophorin and β-sitosterol. The key targets were μ-opioid receptor gene (OPRM1) and 5-hydroxytryptamine receptor subunit 3A positive inhibitory neuron (HTR3A), and the key miRNAs were miR-9-3p and miR-3607-3p. The results of molecular docking showed that the key active components could bind to the key targets and showed good affinity. Conclusion: The expression of multiple genes in hippocampus of AD rats is different. At the same time, traditional Chinese medicine has the characteristics of multi-component and multi-target in the treatment of AD. It can play a neuroprotective role by neuropeptides, biogenic amines and reducing neuroinflammation.

参考文献

[1] Huang G, Li RJ, Bai Q, et al. Multimodal learning of clinically accessible tests to aid diagnosis of neurodegenerative disorders: a scoping review[J]. Health Inf Sci Syst, 2023, 11(1): 32-44.
[2] 郭衷钊, 李颖, 卢钰, 等. 阿尔茨海默病慢性疼痛的影响因素及中医病机探究[J]. 中西医结合心脑血管病杂志, 2023, 21(14): 2622-2625.
[3] 关徐涛, 关运祥, 张振强. 阿尔茨海默病中医核心病机演变规律[J]. 中医学报, 2022, 37(6): 1153-1157.
[4] 郭佳越, 汤燚, 杨银, 等. 阿尔茨海默病的病因与发病机制研究进展[J]. 中国医药导报, 2024, 21(1): 39-42.
[5] 田洪伦, 罗洁, 韩小娟, 等. 阿尔茨海默病患者Hcy、FOL、Vit B-(12)水平与ApoE基因多态性研究[J]. 中外医学研究, 2023, 21(18): 162-166.
[6] 王荣, 陈帅, 赵彩丽, 等. 多基因风险评分与机器学习建模策略下轻度认知障碍发展为阿尔茨海默病的预后研究[J]. 中华疾病控制杂志, 2023, 27(6): 684-690.
[7] Giulio P, Simona L, Matteo M, et al. Vasoactive neuropeptides and Alzheimer's disease: a systematic review focusing on calcitonin gene-related peptide[J]. J Integr Neurosci, 2021, 20(4): 1059-1065.
[8] Diwakar L, Gowaikar R, Chithanathan K, et al. Endothelin-1 mediated vasoconstriction leads to memory impairment and synaptic dysfunction[J]. Scientific Reports, 2021, 11: 4868-4880.
[9] Orhan TK, Hakan A, Nurgul A, et al. Vasoactive intestinal peptide decreases β-amyloid accumulation and prevents brain atrophy in the 5xFAD mouse model of Alzheimer's Disease[J]. J Mol Neurosci, 2019, 68(3): 389-396.
[10] Zala S, Rawien AB, Ronald WH, et al. VerwerAlterations in pituitary adenylate cyclase-activating polypeptide in major depressive disorder,bipolar disorder, and comorbid depression in Alzheimer's disease in the human hypothalamus and prefrontal cortex[J]. Psychol Med, 2023, 53(16): 7537-7549.
[11] Stephanie P, Sebastien B, Afsaneh G. Neuroprotective effects of neuropeptide Y against neurodegenerative disease[J]. Curr Neuropharmacol, 2022, 20(9): 1717-1725.
[12] Cinzia S, Carla P, Pietro C. Substance P and Alzheimer's disease:emerging novel roles[J]. Curr Alzheimer Res, 2016, 13(9): 964-972.
[13] Shiran S, Thomas JE, David LB. Selection of single domain anti-transferrin receptor antibodies for blood-brain barrier transcytosis using a neurotensin based assay and histological assessment of target engagement in a mouse model of Alzheimer's related amyloid-beta pathology[J]. PLoS One, 2022, 17(10): e0276107.
[14] Gao WR, Hu XH, Yu KY, et al. Selective orexin 1 receptor antagonist SB-334867 aggravated cognitive dysfunction in 3xTg-AD mice[J]. Behav Brain Res, 2023, 438: 114171.
[15] 范红娟, 康凯宁, 栗志英. 芹菜素对Aβ-(1-42)致阿尔茨海默病大鼠海马组织氧化应激和炎症反应的影响[J]. 中医学报, 2023, 38(3): 602-608.
[16] 周冰凌, 邵卫, 邱昕, 等. 微核糖核酸-125a通过调控细胞凋亡和炎症反应延缓阿尔茨海默病进展的研究[J]. 上海医学, 2023, 46(1): 17-22.
[17] 邓天玲, 段爱琴, 曾敏玲, 等. 血清miR-340-5p和APPL1水平与老年阿尔茨海默病患者炎症反应与认知功能的相关性[J]. 热带医学杂志, 2022, 22(11): 1551-1556.
[18] 谢平安, 廖辉, 张艳敏, 等. miR-146a尾静脉注射对阿尔茨海默病大鼠认知能力、Th17/Treg分布及炎症因子水平的影响[J]. 山东医药, 2022, 62(20): 46-49.
[19] Wang YB, Liu XX. The Effective components, core targets,and key pathways of ginseng against Alzheimer's Disease[J]. Evid Based Complement Alternat Med, 2023, 2023: 9935942-9935954.
[20] Cristina S, Loretta G, Paola C, et al. Sex, age, and regional differences in CHRM1 and CHRM3 genes expression levels in the human brain biopsies:potential targets for Alzheimer's disease-related sleep disturbances[J]. Curr Neuropharmacol, 2023, 21(3): 740-760.
[21] Cheng XF, Yang QF, Liu J. Constitutional 763.3 Kb chromosome 1q43 duplication encompassing only CHRM3 gene identified by next generation sequencing (NGS) in a child with intellectual disability[J]. Mol Cytogenet, 2019, 12: 16-22.
[22] Aafke E, Barbara F, Ouden AL, et al. The phenotypic spectrum of proximal 6q deletions based on a large cohort derived from social media and literature reports[J]. Eur J Hum Genet, 2018, 26(10): 1478-1489.
[23] 夏皙. HTR1B基因调控区与精神分裂症的相关性及法医学意义[D]. 沈阳: 中国医科大学, 2020.
[24] Tsai RT, Tsai CW, Liu SP, et al. Maackiain ameliorates 6-Hydroxydopamine and SNCA pathologies by modulating the PINK1/Parkin pathway in models of Parkinson's Disease in caenorhabditis elegans and the SH-SY5Y cell line[J]. Int J Mol Sci, 2020, 21(12): 4455-4488.
[25] 王星烨, 孔祥日, 金梦丽, 等. β-谷甾醇对阿尔茨海默病模型小鼠认知功能的改善作用及其机制[J]. 吉林大学学报(医学版), 2023, 49(3): 599-607.
[26] 汪妍言, 黎雪梅. 老年抑郁症与自杀的遗传学研究进展[J]. 实用老年医学, 2023, 37(6): 541-543.
[27] Sabrina B, Dong YJ, Nikola F, et al. Serotonin type 3 receptor subunit gene polymorphisms associated with psychosomatic symptoms in irritable bowel syndrome: a multicenter retrospective study[J]. World J Gastroenterol, 2022, 28(21): 2334-2349.
[28] Li JQ, Zheng SH, Dong YH, et al. Histone methyltransferase SETDB1 regulates the development of cortical htr3a-positive interneurons and mood behaviors[J]. Biol Psychiatry, 2023, 93(3): 279-290.
[29] Huang L, Wang J, Liang GM, et al. Upregulated NMDAR-mediated GABAergic transmission underlies autistic-like deficits in Htr3a knockout mice[J]. Theranostics, 2021, 11(19): 9296-9310.
[30] Zhou H, Wang KX, Xu ZC, et al. Chronic unpredictable stress induces depression/anxiety-related behaviors and alterations of hippocampal monoamine receptor mRNA expression in female mice at different ages[J]. Heliyon, 2023, 9(7): e18369.
[31] Bi WK, Luan SS, Wang J, et al. FSH signaling is involved in affective disorders[J]. Biochem Biophys Res Commun, 2020, 525(4): 915-920.
[32] Liu LF, Liu YT, Wu DD, et al. Inhibiting 5-hydroxytryptamine receptor 3 alleviates pathological changes of a mouse model of Alzheimer's disease[J]. Neural Regen Res, 2023, 18(9): 2019-2028.
[33] Wang PW, Mao SL, Yi TT, et al. LncRNA MALAT1 targets mir-9-3p to upregulate SAP97 in the hippocampus of mice with vascular dementia[J]. Biochem Genet, 2023, 61(3): 916-930.
文章导航

/