基础医学论著

基于网络药理学探讨人参皂苷Rb1治疗帕金森病的作用机制*

  • 祝洪博 ,
  • 代玉晶 ,
  • 赵杰 ,
  • 霍东升
展开
  • 1.包头医学院在读研究生,内蒙古包头 014040;
    2.包头医学院
霍东升

收稿日期: 2023-06-13

  网络出版日期: 2024-06-24

基金资助

内蒙古自然科学基金(2021MS08128);内蒙古自治区卫生健康科技计划项目(202201379)

The mechanism of ginsenoside Rb1 in the treatment of Parkinson's disease based on network pharmacology

  • ZHU Hongbo ,
  • DAI Yujing ,
  • ZHAO Jie ,
  • HUO Dongsheng
Expand
  • 1. Postgraduate student, Baotou Medical College, Baotou 014040,China;
    2. Baotou Medical College

Received date: 2023-06-13

  Online published: 2024-06-24

摘要

目的: 利用网络药理学技术探讨中药人参皂苷Rb1治疗帕金森病的作用机制,为人参皂苷Rb1的临床合理应用提供科学理论依据。方法: 通过在SwissTargetPrediction、SEA以及SuperPred数据库中预测人参皂苷Rb1的靶点;使用关键词“Parkinson Disease”在GeneCards和Omim数据库中获得有关帕金森疾病的相关的靶点;将人参皂苷Rb1与帕金森病的靶点相互映射,作Veen图,从而获得交集基因;然后使用Cytoscape3.8.2软件构建“药物-作用靶点”网络;将韦恩图中与帕金森病相关的21个共有药物靶点导入String(https://string-db.org/)数据库中,进行蛋白-蛋白相互作用预测,从而预测出核心靶点。将人参皂苷Rb1治疗帕金森病的核心靶点导入到DAVID数据库中,得到GO分析结果和KEGG富集结果。利用 AutoDock Vina对人参皂苷Rb1和关键靶点进行分子对接,验证其相互作用活性。结果: 人参皂苷Rb1治疗帕金森病的核心靶点有4个,分别为BCL2L1、VEGFA、FGF2、KDR,相关通路28条。结合人参皂苷Rb1的生物学特性,发现人参皂苷Rb1治疗帕金森病可能是通过PI3K/Akt信号通路参与的生物调节过程,而此调节过程与细胞生物工程中的凋亡的相关机制密切相关。通过关键靶点与人参皂苷Rb1进行分子对接验证,靶点相互作用结合性高。结论: 人参皂苷Rb1治疗PD可能是通过减少细胞凋亡的生物过程发挥作用,影响的相关的通路有PI3K/Akt信号通路、MAPK信号通路、Notch信号通路,通过与BCL2L1、VEGFA、FGF2、KDR等靶点产生作用。

本文引用格式

祝洪博 , 代玉晶 , 赵杰 , 霍东升 . 基于网络药理学探讨人参皂苷Rb1治疗帕金森病的作用机制*[J]. 包头医学院学报, 2024 , 40(6) : 7 -13 . DOI: 10.16833/j.cnki.jbmc.2024.06.002

Abstract

Objective: To explore the mechanism of ginsenoside Rb1 in the treatment of Parkinson 's disease by using network pharmacology technology, and to provide scientific theoretical basis for the clinical rational application of ginsenoside Rb1. Methods: The targets of ginsenoside Rb1 were predicted in SwissTargetPrediction, SEA and SuperPred databases. The related targets of Parkinson's disease were obtained in the GeneCards and Omim databases using the keyword 'Parkinson Disease'. The ginsenoside Rb1 and the target of Parkinson's disease were mapped to each other, and the Veen diagram was made to obtain the intersection gene. Then, Cytoscape 3.8.2 software was used to construct the 'drug-target' network ; the 21 common drug targets related to Parkinson's disease in the Venn diagram were imported into the String (https://string-db.org/) database for protein-protein interaction prediction, so as to predict the core targets. The core targets of ginsenoside Rb1 in the treatment of Parkinson's disease were imported into the DAVID database to obtain GO analysis results and KEGG enrichment results. AutoDock Vina was used to perform molecular docking between ginsenoside Rb1 and key targets to verify their interaction activity. Results: There were four core targets of ginsenoside Rb1 in the treatment of Parkinson's disease, namely BCL2L1, VEGFA, FGF2, KDR, with 28 related pathways. Combined with the biological characteristics of ginsenoside Rb1, it was found that ginsenoside Rb1 treatment of Parkinson's disease mght be involved in the biological regulation process through the PI3K/Akt signaling pathway, and this regulation process was closely related to the mechanism of apoptosis in cell bioengineering. Through the molecular docking verification of the key target and ginsenoside Rb1, the target interaction was highly combined. Conclusion: The mechanism of ginsenoside Rb1 in the treatment of PD may play a role by reducing the biological process of apoptosis. The related pathways affected are PI3K/Akt signaling pathway, MAPK signaling pathway, Notch signaling pathway, and BCL2L1, VEGFA, FGF2, KDR and other targets.

参考文献

[1] Dorsey ER,Sherer T, Okun MS, et al. The emerging evidence of the parkinson pandemic[J]. Parkinsons Dis, 2018,8(s1):S3-S8.
[2] Puspita L, Chung SY, Shim JW. Oxidative stress and cellular pathologies in Parkinson’s disease[J]. Mol Brain, 2017,10(1):53.
[3] 宋悦,刘森洋,高宇,等. 人参皂苷Rb1抗炎作用及其机制研究进展[J]. 中国医学创新,2023,20(1):173-178.
[4] 刘博,俞婷,韩晓蕾,等. 人参皂苷抗炎作用及其分子机制的研究进展[J]. 中国药学杂志,2019,54(4):253-258.
[5] 耿艺娟,孙梦桢,赵进东,等. 人参皂苷Rb1对MPTP诱导的神经元损伤和小鼠行为学异常的作用研究[J]. 天然产物研究与开发,2022,34(5):842-847.
[6] 毛丽斯,朱晓红. 网络药理学在中药领域的应用进展[J]. 中医药管理杂志,2021,29(13):98-102.
[7] 王子怡,王鑫,张岱岩,等. 中医药网络药理学:《指南》引领下的新时代发展[J]. 中国中药杂志,2022,47(1):7-17.
[8] 汪亚楠,李思齐,岳一强,等. 基于网络药理学的苓桂术甘汤治疗阿尔茨海默病的潜在作用机制研究[J]. 中草药,2019,50(23):5812-5822.
[9] Safran M, Dalah I, Alexander J, et al. GeneCards Version 3:the human gene integrator[J]. Database, 2010,2010:baq020.
[10] Amberger JS,Bocchini CA,Schiettecatte F,et al. OMIM.org:online Mendelian Inheritance in Man (OMIM), an online catalog of human genes and genetic disorders[J]. Nucleic Acids Res, 2015,43(Database issue):D789-D798.
[11] Szklarczyk D, Gable AL, LYON D, et al. String v11:protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets[J]. Nucleic Acids Res, 2019,47(D1):D607-D613.
[12] Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists[J]. Nucleic Acids Res, 2009,37(1):1-13.
[13] 侯兵乔,刘荣瑜,王迪,等. 基于网络药理学及分子对接探讨青龙衣抗胃炎作用的潜在靶点和分子机制[J]. 中国药学杂志,2023,58(7):599-610.
[14] 朱成姗,李子寒,彭洪兵,等. 基于网络药理学和睾丸间质细胞模型探讨恩施巴戟促进睾酮分泌的作用机制[J]. 中草药,2022,53(23):7430-7439.
[15] 李坤,马壮士,董玲芳,等. 基于网络药理学和分子对接探讨慈丹胶囊治疗肝癌的作用机制[J]. 中国临床药理学杂志,2022,38(22):2766-2770.
[16] Fu Y, Xing RR, Wang LL, et al. Neurovascular protection of salvianolic acid B and ginsenoside Rg1 combination against acute ischemic stroke in rats[J]. Neuroreport, 2021,32(13):1140-1146.
[17] 杨常青,韩芳芳,袁菲,等. 人参皂苷Rb1抑制利多卡因诱导小鼠原代脊髓神经干细胞损伤研究[J]. 安徽医科大学学报,2020,55(9):1332-1338.
[18] 魏山山,王孟迪,姜宁,等. 人参皂苷Rg1、Rb1、Rg1+Rb1改善东莨菪碱致小鼠认知障碍的作用比较[J]. 中国比较医学杂志,2022,32(4):94-101.
[19] 姚远,杜静怡,周文娟. 人参皂苷Rb1促进小鼠坐骨神经损伤修复的作用及机制[J]. 解剖学报,2022,53(1):19-27.
[20] 罗荣卿,胡玉英. PI3K/Akt信号通路与帕金森病相关性及中医药治疗概述[J]. 山东中医杂志,2021,40(12):1379-1383.
[21] 周怡言,曾宪峰,刘鑫鑫. miR-221靶向PTEN介导PI3K/AKT信号通路调节细胞自噬参与帕金森病的机制研究[J]. 脑与神经疾病杂志,2021,29(7):411-417.
文章导航

/