目的: 研究儿童神经母细胞瘤患者的临床特征及预后因素,并构建列线图预测患者的预后。方法: 回顾性分析美国SEER数据库2004~2016年诊断为神经母细胞瘤的2 312例患者资料,采用R软件构建列线图来预测患者总生存时间(OS)和癌症特异生存时间(CSS)。使用一致性指数(C-指数)、曲线下面积(AUC)、校准曲线和决策曲线分析(DCA)对列线图的预测性能进行评估,并对1年、3年和5年的OS和CSS进行了校准。结果: 多因素分析显示年龄、原发部位、分级、SEER分期、手术和化疗是儿童神经母细胞瘤患者预后的独立危险因素,基于上述因素绘制的列线图具有较好的准确性(OS的C-指数=0.778,AUC=0.824; CSS的C-指数=0.801,AUC=0.836)。此外,校准曲线显示列线图预测的1年、3年和5年的OS和CSS概率与实际生存率有着良好的一致性。结论: 年龄、原发部位、分级、SEER分期、手术和化疗是儿童神经母细胞瘤患者预后的独立危险因素。本研究构建的预后列线图可以用于预测儿童神经母细胞瘤患者的预后情况,为患者个体化治疗提供参考。
Objective: To study the clinical features and prognostic factors of childhood neuroblastoma patients, and construct a nomogram to predict the prognosis of the patients. Methods: The data of 2 312 children with neuroblastoma in American SEER database were retrospectively analyzed from 2004 to 2016, and the R software was used to construct the nomogram to predict the overall survival (OS) and cancer-specific survival (CSS). The predictive performance of the nomogram was evaluated using the consistency index (C-index), area under the curve (AUC), calibration curves and decision curve analysis (DCA) curve, and the nomogram was calibrated for 1-, 3- and 5-years OS and CSS. Results: Multivariate analysis showed that age, primary site, grade, SEER stage, surgery and chemotherapy were independent risk factors for the prognosis of childhood neuroblastoma patients. The nomogram based in the above factors has good accuracy (OS: C-index=0.778, AUC=0.824; CSS: C-index=0.801, AUC=0.836). In addition, the calibration curves showed a good consistency between the predicted and actual 1-, 3- and 5-year OS and CSS rates of the nomogram. Conclusion: Age, primary site, grade, SEER stage, surgery, and chemotherapy were independent risk factors for the prognosis of childhood neuroblastoma patients. The prognostic nomogram established in this study can be used to predict the prognosis of childhood neuroblastoma patients and provide a reference for individualized patient treatment.
[1] Steliarova-Foucher E, Colombet M, Ries La G, et al. International incidence of childhood cancer, 2001-10: a population-based registry study[J]. Lancet Oncol, 2017, 18(6): 719-731.
[2] Sommelet D, Lacour B, Clavel J. Epidemiology of childhood cancer [J]. Bull Acad Natl Med, 2003, 187(4): 711-37, discussion 738-41.
[3] Ward E, Desantis C, Robbins A, et al. Childhood and adolescent cancer statistics, 2014[J]. CA Cancer J Clin, 2014, 64(2): 83-103.
[4] Zafar A, Wang W, Liu G, et al. Molecular targeting therapies for neuroblastoma: progress and challenges[J]. Med Res Rev, 2021, 41(2): 961-1021.
[5] London WB, Castel V, Monclair T, et al. Clinical and biologic features predictive of survival after relapse of neuroblastoma: a report from the International Neuroblastoma Risk Group project[J]. J Clin Oncol, 2011, 29(24): 3286-3292.
[6] Pearson ADJ, Pinkerton CR, Lewis IJ, et al. High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomised trial[J]. Lancet Oncol, 2008, 9(3): 247-256.
[7] Matthay KK, Reynolds CP, Seeger RC, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children's oncology group study[J]. J Clin Oncol, 2009, 27(7): 1007-1013.
[8] Monclair T, Brodeur GM, Ambros PF, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report[J]. J Clin Oncol, 2009, 27(2): 298-303.
[9] 张瑶, 杨琛轩, 李仕来. 基于SEER数据库的成人神经母细胞瘤临床特征及预后因素研究 [J]. 蚌埠医学院学报, 2022, 47(11): 1496-1503.
[10] 王园芝, 田野, 赵睿婷, 等. 无MYCN基因扩增的儿童神经母细胞瘤预后列线图构建 [J]. 重庆医学, 2022, 51(16): 2730-2735, 2740.
[11] 刘裕. 基于SEER数据库比较儿童与成人髓母细胞瘤的临床特征、总体生存率以及预后因素[D]. 南昌: 南昌大学, 2022.
[12] 杨婷. 156例神经母细胞瘤的临床回顾性分析[D]. 重庆: 重庆医科大学, 2015.
[13] Kreitz K, Ernst A, Schmidt R, et al. A new risk score for patients after first recurrence of stage 4 neuroblastoma aged ≥18 months at first diagnosis[J]. Cancer Med, 2019, 8(17): 7236-7243.
[14] Wu S, Chen JN, Zhang QW, et al. A new metastatic lymph node classification-based survival predicting model in patients with small bowel adenocarcinoma: a derivation and validation study[J]. EBioMedicine, 2018, 32: 134-141.
[15] Iasonos A, Schrag D, Raj G V, et al. How to build and interpret a nomogram for cancer prognosis [J]. J Clin Oncol, 2008, 26(8): 1364-1370.
[16] Pan YX, Chen JC, Fang AP, et al. A nomogram predicting the recurrence of hepatocellular carcinoma in patients after laparoscopic hepatectomy[J]. Cancer Commun (Lond), 2019, 39(1): 55.
[17] Fernández Montes A, López López C, Argilés Martínez G, et al. Prognostic nomogram and patterns of use of folfiri-aflibercept in advanced colorectal cancer: a real-world data analysis[J]. Oncologist, 2019, 24(8): e687-e695.
[18] Yang Z, Zi Q, Xu K, et al. Development of a macrophages-related 4-gene signature and nomogram for the overall survival prediction of hepatocellular carcinoma based on WGCNA and LASSO algorithm[J]. Int Immunopharmacol, 2021, 90: 107238.
[19] Jiang S, Zhao R, Li Y, et al. Prognosis and nomogram for predicting postoperative survival of duodenal adenocarcinoma: a retrospective study in china and the seer database[J]. Sci Rep, 2018, 8(1): 7940.