临床医学论著

基于血常规和颈动脉斑块构建缺血性脑卒中nomogram风险预测模型*

  • 王益松 ,
  • 赵沨 ,
  • 张红珍
展开
  • 1.安徽理工大学,安徽淮南 232001;
    2.安徽理工大学第一附属医院,安徽淮南 232001

收稿日期: 2023-12-13

  网络出版日期: 2024-03-22

基金资助

*安徽理工大学研究生创新基金项目(编号:研究生[2022]17号文);安徽省教育厅重点研究项目(编号:KJ2019A0094);安徽省教育厅2020年度高等学校省级质量工程(皖教秘高[2020]155号教学研究一般项目,编号:2020jyxm0463)

Construction of a nomogram prediction model for ischaemic stroke based on routine blood test and carotid plaque

  • WANG Yisong ,
  • ZHAO Feng ,
  • ZHANG Hongzhen
Expand
  • 1. Anhui University of Science and Technology, Huainan 232001, China;
    2. The First Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, China

Received date: 2023-12-13

  Online published: 2024-03-22

摘要

目的: 基于血常规和颈动脉斑块构建一种个性化nomogram风险预测模型预测颈动脉粥样硬化(carotid atherosclerosis,CAS)患者发生缺血性脑卒中(cerebral ischemic stroke, CIS)的风险。方法: 选取2021年3月1日至2022年3月1日在上海市第八人民医院神经内科住院的CAS患者214例,收集患者的基本特征、血常规指标及影像学检查数据。根据是否发生缺血性脑卒中分别分为两组,随机抽取全部数据按7∶3的比例拆分为建模组和验证组。采用单因素logistic 回归和lasso回归筛选CAS患者发生缺血性脑卒中的独立风险预测因子,将其导入R软件构建nomogram预测模型。ROC曲线下面积(AUC)、校准曲线和DCA决策曲线对模型进行内部验证。结果: 单因素logistic 回归和lasso回归分析结果显示,红细胞分布宽度、大型血小板比率、血小板计数是CAS患者发生缺血性脑卒中的独立风险预测因子(P<0.05),由于年龄对于CIS具有重要临床意义,最终也将其纳入模型。基于上述预测因子导入R软件构建nomogram预测模型并进行模型内部验证。建模组受试者工作特征曲线下面积(area under the curve,AUC)为0.644,验证组AUC为0.677,表示该nomogram模型预测能力较好。Hosmer-Lemeshow拟合优度检验(P=0.058),表明该模型具有较好的区分度。DCA曲线显示风险阈值为8%~45%时使用该模型具有临床实用价值。结论: 本研究构建并验证了一个预测CAS患者发生缺血性脑卒中的nomogram风险预测模型,该模型预测能力和区分能力较好,对临床评估CAS患者发生缺血性脑卒中具有较高的临床实用价值。

本文引用格式

王益松 , 赵沨 , 张红珍 . 基于血常规和颈动脉斑块构建缺血性脑卒中nomogram风险预测模型*[J]. 包头医学院学报, 2024 , 40(3) : 9 -15 . DOI: 10.16833/j.cnki.jbmc.2024.03.003

Abstract

Objective: To predict the risk of cerebral ischemic stroke (CIS) in patients with carotid atherosclerosis (CAS) by constructing a personalized nomogram prediction model based on routine blood tests and carotid plaque. Methods: A total of 240 CAS patients who were admitted to the Department of Neurology of Shanghai Eighth People's Hospital from March 1, 2021 to March 1, 2022 were selected, and the basic characteristics, routine blood indicators and imaging data were collected. The patients were divided into two groups according to whether they had ischemic stroke or not, and all data were randomly selected and split into the modeling and validation group in the ratio of 7:3. The model was internally validated using the area under the ROC curve (AUC), calibration curve and decision curve analysis (DCA). Results: One-way logistic regression and lasso regression analyses showed that red cell distribution width (RDW), platelet-large cell ratio (P-LCR) and platelet count were independent predictors of ischaemic stroke in patients with CAS (P<0.05), and age was eventually included in the model due to its clinical significance for CIS. A nomogram prediction model was constructed based on the above predictors imported into R software and the model was validated internally. The Hosmer-Lemeshow goodness of fit test (P=0.058) indicated that the model had good discrimination. DCA results showed that using the model at risk thresholds of 8% to 45% was of good clinical practice. Conclusion: A nomogram prediction model for ischaemic stroke in CAS patients was constructed and validated in this study, which confirmed that the model had good predictive and discriminatory ability, and it is of high clinical utility in the clinical assessment of ischaemic stroke in CAS patients.

参考文献

[1] Wu SM, Wu B, Liu M, et al. Stroke in China: advances and challenges in epidemiology, prevention, and management[J]. Lancet Neurol, 2019, 18(4): 394-405.
[2] Freilinger T, Dimitriadis K, Nikolaou K, et al. Stroke while squeezing a pimple: traumatic rupture of a vulnerable carotid artery plaque[J]. Neurology, 2011, 76(3): 305-306.
[3] Lorenz MW, Gao L, Ziegelbauer K, et al. Correction: predictive value for cardiovascular events of common carotid intima media thickness and its rate of change in individuals at high cardiovascular risk-results from the PROG-IMT collaboration[J]. PLoS One, 2018, 13(9): e0204633.
[4] 杨朝菊, 耿瑞丽, 霍丽静, 等. 2型糖尿病患者血清NGAL与颈动脉粥样硬化的关系[J]. 现代预防医学, 2017, 44(8): 1517-1519, 1536.
[5] 王朝刚, 张晓曼, 徐晓玉. 急性脑梗死患者血清miR-15b、miR-19a和VEGF水平与颈动脉狭窄程度的相关性分析[J]. 包头医学院学报, 2022, 38(5): 13-17.
[6] 俞立波, 沈莺, 李连喜, 等. 颈动脉和下肢动脉超声对新诊断2型糖尿病动脉粥样硬化检出的比较[J]. 中华医学杂志, 2013, 93(27): 2143-2145.
[7] 杨庆华, 沈文, 贾贤达, 等. 颈动脉粥样硬化斑块的超声检测与缺血性脑卒中的相关性研究[J]. 海南医学院学报, 2016, 22(15): 1755-1757.
[8] 韩沙如拉, 杨志甫, 袁瑞, 等. 影响急性脑梗死患者颈动脉斑块稳定性的危险因素分析[J]. 包头医学院学报, 2022, 38(6): 7-11.
[9] 王俊, 王雪君, 朱丽. 脑卒中高危人群颈动脉超声异常检出率及其影响因素分析[J]. 现代预防医学, 2015, 42(15): 2859-2862.
[10] 陈爱芳, 李莉. 颈动脉彩色多普勒超声检查与脑梗死预测的相关性研究[J]. 海南医学院学报, 2008, 14(6): 647-649.
[11] 中华医学会神经病学分会, 中华医学会神经病学分会脑血管病学组. 中国急性缺血性脑卒中诊治指南2018[J]. 中华神经科杂志, 2018, 51(9): 666-682.
[12] 温朝阳. 中国医师协会超声医师分会成立[J]. 中华超声影像学杂志, 2007(5): 372.
[13] 中华医学会健康管理委员会, 中华医学会超声医学分会, 中华医学会心血管病学会, 等. 中国健康体检人群颈动脉超声检查规范[J]. 中华健康管理学杂志, 2015, 9(4): 254-260.
[14] Ni TT, Fu Y, Zhou W, et al. Carotid plaques and neurological impairment in patients with acute cerebral infarction[J]. PLoS One, 2020, 15(1): e0226961.
[15] Yuan K, Chen JJ, Xu PF, et al. A nomogram for predicting stroke recurrence among young adults[J]. Stroke, 2020, 51(6): 1865-1867.
[16] Tang M, Gao J, Ma NE, et al. Radiomics nomogram for predicting stroke recurrence in symptomatic intracranial atherosclerotic Stenosis[J]. Front Neurosci, 2022, 16: 851353.
[17] Lei ZH, Li SL, Feng HY, et al. Prognostic nomogram for patients with minor stroke and transient ischaemic attack[J]. Postgrad Med J, 2021, 97(1152): 644-649.
[18] Roy-O'reilly M, Mccullough LD. Age and sex are critical factors in ischemic stroke pathology[J]. Endocrinology, 2018, 159(8): 3120-3131.
[19] 但慧桃. 青年脑卒中病因及危险因素的临床分析[J]. 海南医学院学报, 2010, 16(11): 1422-1423, 1432.
[20] Jia H, Li HM, Zhang Y, et al. Association between red blood cell distribution width (RDW) and carotid artery atherosclerosis (CAS) in patients with primary ischemic stroke[J]. Arch Gerontol Geriatr, 2015, 61(1): 72-75.
[21] Feng GH, Li HP, Li QL, et al. Red blood cell distribution width and ischaemic stroke[J]. Stroke Vasc Neurol, 2017, 2(3): 172-175.
[22] Mohindra R, Mishra U, Mathew R, et al. Red cell distribution width (RDW) index as a predictor of severity of acute ischemic stroke: a correlation study[J]. Adv J Emerg Med, 2020, 4(2): e24.
[23] Wang ZY, Liu Y. Red cell distribution width as a predictor of one-year prognosis and mortality of endovascular therapy for acute anterior circulation ischemic stroke[J]. J Stroke Cerebrovasc Dis, 2022, 31(2): 106243.
[24] 刘映虹. 原发性高血压患者红细胞和血小板参数的变化与颈动脉粥样硬化的关系分析[J]. 现代诊断与治疗, 2019, 30(3): 461-463.
[25] 刘杰. 血小板参数与缺血性脑卒中患者颈动脉狭窄的相关性分析[J]. 中国实用神经疾病杂志, 2014, 17(19): 25-27.
[26] Yang Y, Xie D, Zhang YB. Increased platelet-to-lymphocyte ratio is an independent predictor of hemorrhagic transformation and In-hospital mortality among acute ischemic stroke with large-artery atherosclerosis patients[J]. Int J Gen Med, 2021, 14: 7545-7555.
[27] Xu T, Zhou Y, Wu XM, et al. Platelet count and clinical outcomes among ischemic stroke patients with endovascular thrombectomy in DIRECT-MT[J]. Clin Chem Lab Med, 2022, 60(10): 1675-1682.
[28] 赵志勇, 缪珩, 韦玉和, 等. 大型血小板比率与2型糖尿病并发缺血性脑卒中的关系[J]. 川北医学院学报, 2016, 31(2): 211-213.
[29] Du J, Wang Q, He B, et al. Association of mean platelet volume and platelet count with the development and prognosis of ischemic and hemorrhagic stroke[J]. Int J Lab Hematol, 2016, 38(3): 233-239.
[30] Winiewski A, Filipska K, Sikora J, et al. The prognostic value of high platelet reactivity in ischemic stroke depends on the etiology: a pilot study[J]. J Clin Med, 2020, 9(3): 859.
[31] Patti G, Di Martino G, Ricci F, et al. Platelet indices and risk of death and cardiovascular events: results from a large population-based cohort study[J]. Thromb Haemost, 2019, 119(11): 1773-1784.
[32] 孟翀, 王桂红. 血小板参数与急性缺血性脑卒中的关系[J]. 中国医药指南, 2017, 15(12): 11-12.
[33] Zhu N, Shu H, Jiang WB, et al. Mean platelet volume and mean platelet volume/platelet count ratio in nonvalvular atrial fibrillation stroke and large artery atherosclerosis stroke[J]. Medicine, 2020, 99(28): e21044.
文章导航

/