基础医学

基于网络药理学结合分子对接研究5味蒙药防治皮肤光老化的作用机制

  • 许谨帆 ,
  • 邬国栋 ,
  • 于翔琳 ,
  • 董至恒 ,
  • 包立道 ,
  • 刘全礼
展开
  • 1.包头医学院药学院,内蒙古包头 014040;
    2.内蒙古医科大学附属医院药剂部,内蒙古包头 014040;
    3.呼和浩特市中医蒙医医院,内蒙古包头 014040;
    4.包头医学院蒙中药活性物质与功能研究所,内蒙古包头 014040
刘全礼

收稿日期: 2022-11-24

  网络出版日期: 2023-08-31

基金资助

中央引导地方科技发展资金(1280697693076717568);国家自然科学基金(82160703);内蒙古自治区自然科学基金(2020MS08078,2020MS08106,2019MS08110);2022年度自治区卫生健康科技计划项目(202201238);内蒙古自治区中医药(蒙医药)中青年领军人才培育项目(2022-RC011)

Study on the mechanism of action of 5 Mongolian medicines against skin photoaging based on network pharmacology and molecular docking

  • XU Jinfan ,
  • WU Guodong ,
  • YU Xianglin ,
  • DONG Zhiheng ,
  • BAO Lidao ,
  • LIU Quanli
Expand
  • 1. Department of Pharmacy, Baotou Medical College, Baotou 014040, China;
    2. Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Baotou 014040, China;
    3. Hohhot Mongolian Hospital of Traditional Chinese Medicine, Baotou 014040, China;
    4. Institute of Bioactive Substance and Function of Mongolian Medicine and Chinese Materia Medica, Baotou Medical College, Baotou 014040, China

Received date: 2022-11-24

  Online published: 2023-08-31

摘要

目的: 紫草、茯苓、当归、蛇床子、冰片防治皮肤光老化作用机制的网络药理学研究。方法: 利用TCMSP、TCMDatabase@Taiwan和Swiss Target Prediction数据库收集药物活性化合物及对应靶点。应用GeneCards和NCBI Gene数据库收集皮肤光老化疾病靶点。采用STRING数据库构建药物、疾病交集靶点的蛋白互作网络。应用Metascape数据库对靶点进行基因本体(gene ontology,GO)和京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes,KEGG)注释分析。通过Autodock验证网络药理学分析结果。结果: 通过数据库筛选得到活性成分35个,疾病相关靶点241个。药物-成分-靶点-疾病网络共涉及126个节点和387条边,通过获取网络拓扑关系获得15个重要节点。通过蛋白互作网络分析得到6个核心靶蛋白。GO富集分析获得生物过程15个条目。KEGG信号通路富集分析获得8条信号通路。分子对接结果显示活性成分与核心靶蛋白对接构象稳定。结论: 5种蒙药防治皮肤光老化主要与癌症信号通路相关,其作用机制可能与调控细胞凋亡、增强氧化应激以及促进血管新生等有关。

本文引用格式

许谨帆 , 邬国栋 , 于翔琳 , 董至恒 , 包立道 , 刘全礼 . 基于网络药理学结合分子对接研究5味蒙药防治皮肤光老化的作用机制[J]. 包头医学院学报, 2023 , 39(7) : 1 -7 . DOI: 10.16833/j.cnki.jbmc.2023.07.001

Abstract

Objective: To the mechanism of action of Radix Angelicae Sinensis, Poria, Angelica sinensis, Cnidii Fructus and Borneolum based on network pharmacology and molecular docking. Methods: The TCMSP database, TCMDatabase@Taiwan database, and Swiss Target Prediction database were used to collect the active compounds and corresponding targets of 5 Mongolian medicines. The GeneCards and the NCBI Gene database were used to collect the targets of skin photoaging diseases. The STRING database was used to construct a PPI network of the intersecting targets of herbs and disease. The Metascape database was applied for GO and KEGG pathway enrichment analysis of the targets. Molecular docking between active compounds and targets was verified by Autodock. Results: 35 active ingredients and 241 disease-related targets were obtained through database screening. A total of 126 nodes and 387 edges were involved in the herbs-active compounds-targets-disease network. 15 important nodes were obtained by obtaining network topology. 6 important target proteins were obtained by protein interaction network analysis. 15 entries of biological processes were obtained with GO enrichment analysis. KEGG signaling pathway enrichment analysis yielded 8 signaling pathways. The molecular docking results showed that the active compounds docked with the core target protein in a stable conformation. Conclusion: The mechanism of action of the 5 Mongolian medicines against skin photoaging are mainly related to cancer signaling pathway, and their mechanisms of action may be related to the regulation of apoptosis, enhancement of oxidative stress, and promotion of vascular renewal.

参考文献

[1] 李鹏琴, 张桂云, 李雪, 等. 皮肤光老化的研究进展[J]. 中国美容医学, 2020, 29(5): 174-177.
[2] 何丽, 林雪霏, 陈慧, 等. 皮肤光老化治疗研究进展[J]. 中国麻风皮肤病杂志, 2020, 36(11): 687-689, 696.
[3] 朱姗, 赵志月, 王子静, 等. 皮肤老化分子机制及中药防治皮肤老化研究进展[J]. 天津中医药大学学报, 2021, 40(4): 431-439.
[4] 殷花, 林忠宁, 朱伟. 皮肤光老化发生机制及预防[J]. 环境与职业医学, 2014, 31(7): 565-569.
[5] Han A, Chien AL, Kang S. Photoaging[J]. Dermatol Clin, 2014, 32(3): 291-299.
[6] Scharffetter-kochanek K, Brenneisen P, Wenk J, et al. Photoaging of the skin from phenotype to mechanisms[J]. Exp Gerontol, 2000, 35(3): 307-316.
[7] 廖勇, 廖万清. 皮肤光老化的分子机制[J]. 中国美容医学, 2010, 19(3): 444-447.
[8] 谢萨其拉古拉, 孟柯. 衰老机制及蒙医抗衰老研究进展[J]. 中国民族民间医药, 2018, 27(11): 50-52.
[9] 塔娜, 孟根杜希, 哈申图雅, 等. 蒙医抗衰老研究进展[J]. 中国民族医药杂志, 2021, 27(8): 47-50.
[10] Bardou P, Mariette J, Escudié F, et al. Jvenn: an interactive Venn diagram viewer[J]. BMC Bioinformatics, 2014, 15(1): 293.
[11] Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11): 2498-2504.
[12] 王恒旭. 皮肤光老化领域可视化分析及中药作用机制研究[D]. 沈阳: 辽宁中医药大学, 2021.
[13] 张晓凤, 薛延团, 张得钧. 植物甾醇保护胃粘膜及抗消化道肿瘤的研究进展[J]. 基因组学与应用生物学, 2020, 39(5): 2444-2450.
[14] 徐倩, 徐国兵. 香豆素类化合物代谢研究进展[J]. 中国实验方剂学杂志, 2015, 21(3): 222-225.
[15] de Araujo Leite JC, de Castro TMX, Barbosa-Filho JM, et al. Photoprotective effect of coumarin and 3-hydroxycoumarin in sea urchin gametes and embryonic cells[J]. J Photochem Photobiol B, 2015, 146: 44-51.
[16] Lu PJ, Yang C, Lin CN, et al. Shiunko and acetylshikonin promote reepithelialization, angiogenesis, and granulation tissue formation in wounded skin[J]. Am J Chin Med, 2008, 36(1): 115-123.
[17] 李冷, 钟晓琴, 卢传坚, 等. 紫草素对人角质形成细胞HaCaT增殖抑制以及细胞毒性的初步研究[J]. 时珍国医国药, 2017, 28(4): 857-860.
[18] 解欣然, 张蕾, 刘欣, 等. 紫草素对IL-17诱导角质形成细胞增殖及趋化因子表达的影响[J]. 中国中药杂志, 2015, 40(5): 946-949.
[19] Li QS, Zeng JC, Su ML, et al. Acetylshikonin from zicao attenuates cognitive impairment and hippocampus senescence in d-galactose-induced aging mouse model via upregulating the expression of SIRT1[J]. Brain Res Bull, 2018, 137: 311-318.
[20] Ramot Y, Bertolini M, Boboljova M, et al. PPAR-γ signalling as a key mediator of human hair follicle physiology and pathology[J]. Exp Dermatol, 2020, 29(3): 312-321.
[21] Kim EJ, Jin XJ, Kim YK, et al. UV decreases the synthesis of free fatty acids and triglycerides in the epidermis of human skin in vivo, contributing to development of skin photoaging[J]. J Dermatol Sci, 2010, 57(1): 19-26.
[22] Choi YJ. Shedding light on the effects of calorie restriction and its mimetics on skin biology[J]. Nutrients, 2020, 12(5): 1529.
[23] Fan TJ, Han LH, Cong RS, et al. Caspase family proteases and apoptosis[J]. Acta Biochim Biophys Sin, 2005, 37(11): 719-727.
[24] Fischer TW, Zmijewski MA, Wortsman J, et al. Melatonin maintains mitochondrial membrane potential and attenuates activation of initiator (casp-9) and effector caspases (casp-3/casp-7) and PARP in UVR-exposed HaCaT keratinocytes[J]. J Pineal Res, 2008, 44(4): 397-407.
[25] Li P, Zhou LB, Zhao T, et al. Caspase-9: structure, mechanisms and clinical application[J]. Oncotarget, 2017, 8(14): 23996-24008.
[26] Mandal R, Barrón JC, Kostova I, et al. Caspase-8: the double-edged sword[J]. Biochim Biophys Acta BBA Rev Cancer, 2020, 1873(2): 188357.
[27] Kim JA, Lee JE, Kim JH, et al. Penta-1, 2, 3, 4, 6- O-galloyl-β-D-glucose inhibits UVB-induced photoaging by targeting PAK1 and JNK1[J]. Antioxidants (Basel), 2019, 8(11): 561.
[28] Shim JS, Kwon YY, Han YS, et al. Inhibitory effect of panduratin A on UV-induced activation of mitogen-activated protein kinases (MAPKs) in dermal fibroblast cells[J]. Planta Med, 2008, 74(12): 1446-1450.
[29] Shi LQ, Ruan CL. Expression and significance of MMP-7, c-Jun and c-Fos in rats skin photoaging[J]. Asian Pac J Trop Med, 2013, 6(10): 768-770.
[30] Kunzmann AT, Murray LJ, Cardwell CR, et al. PTGS2 (Cyclooxygenase-2) expression and survival among colorectal cancer patients: a systematic review[J]. Cancer Epidemiol Biomarkers Prev, 2013, 22(9): 1490-1497.
[31] Elmets CA, Ledet JJ, Athar M. Cyclooxygenases: mediators of UV-induced skin cancer and potential targets for prevention[J]. J Invest Dermatol, 2014, 134(10): 2497-2502.
[32] Parrado C, Mascaraque M, Gilaberte Y, et al. Fernblock (Polypodium leucotomos extract): molecular mechanisms and pleiotropic effects in light-related skin conditions, photoaging and skin cancers, a review[J]. Int J Mol Sci, 2016, 17(7): 1026.
[33] 黄美雯, 杨华杰, 周晓春, 等. 网络药理学在民族药研究中的应用与展望[J]. 中国中药杂志, 2019, 44(15): 3187-3194.
文章导航

/