中国医学论著

半夏泻心汤及其拆方改善炎症性肠病肠道免疫的潜在靶点及作用机制的网络药理学分析*

  • 霍敏峰 ,
  • 岳娟 ,
  • 董秋梅 ,
  • 刘喜平 ,
  • 刘君 ,
  • 张媛媛 ,
  • 李明成
展开
  • 1.甘肃中医药大学基础医学院,甘肃兰州 730000;
    2.甘肃省中医方药挖掘与创新转化重点实验室;
    3.内蒙古医科大学中医学院

收稿日期: 2022-08-31

  网络出版日期: 2023-03-08

基金资助

*内蒙古自然科学基金项目(2019MS08011);甘肃省中医方药挖掘与创新转化重点实验室开放基金(ZYFY-2020-003);甘肃省委组织部陇原青年创新创业人才项目(2020RCXM183)

Potential targets and mechanism of Banxia Xiexin decoction and its disassembled prescriptions on improving intestinal immunity in patients with inflammatory bowel disease

  • HUO Minfeng ,
  • YUE Juan ,
  • DONG Qiumei ,
  • LIU Xiping ,
  • LIU Jun ,
  • ZHANG Yuanyuan ,
  • LI Mingcheng
Expand
  • 1. School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
    2. Gansu Provincial Key Laboratory of Chinese Medicine Formulas Excavation and Innovation Transformation;
    3. College of Traditional Chinese Medicine, Inner Mongolia Medical University

Received date: 2022-08-31

  Online published: 2023-03-08

摘要

目的: 运用网络药理学方法研究半夏泻心汤及其拆方对炎症性肠病肠道免疫的潜在靶点及作用机制。方法: 通过中药系统药理学数据库(TCMSP)筛选出半夏泻心汤及其拆方组(辛开组、苦降组、甘补组)的有效活性成分和作用靶点,利用GeneCards、OMMI数据库筛选炎症性肠病相关的潜在作用靶点,将二者交集后采用 Cytoscape 3.7.0 软件构建活性成分-靶点网络图,利用string绘制PPI靶点蛋白作用网络图,利用GO和KEGG富集分析药物与炎症性肠病的信号通路。结果: 通过筛选得出半夏泻心汤的有效活性成分129个、辛开组(半夏+干姜)的有效活性成分43个、苦降组(黄芩+黄连) 的有效活性成分104个、甘补组(人参+甘草+大枣)的有效活性成分121个。进一步分析后发现半夏泻心汤组中Quercetin(槲皮素)、Beta-sitosterol(β-谷甾醇)、Kaemoferol(山柰酚)、Stigmasterol(豆甾醇)、Baicalein(黄芩素)等药物活性成分与PTGS1、AR、ESR1、PRSS1、PPARG等与IBD疾病靶点关系较为密切,并可能通过参与 AGE-RAGE、TNF等信号通路发挥调节作用;辛开组中Beta-sitosterol(β-谷甾醇)、Baicalein(黄芩素)、Stigmasterol(豆甾醇)、Cavidine(卡文定碱)、Coniferin(松柏苷)等药物活性成分与PTGS1、CHRM1、CHRM3、PGR、AR等疾病靶点相关,并参与P53信号通路;苦降组中Quercetin(槲皮素)、Baicalein(黄芩素)、Wogonin、Beta-sitosterol(β-谷甾醇)、Acacetin(金合欢素)等药物活性成分与PTGS1、AR、PRSS1、ESR1、CHEK1等疾病靶点关系较为密切,并与 P13K-Akt、AGE-RAGE、P53、TNF信号通路相关;甘补组中Quercetin(槲皮素)、Kaemoferol(山柰酚)、Beta-sitosterol(β-谷甾醇)、Stigmasterol(豆甾醇)、Isorhamnetin(异鼠李素)等药物活性成分与ESR1、PPARG、AR、PTGS1、PRSS1等疾病靶点相关,可能通过参与 AGE-RAGE、TNF信号通路等发挥抗凋亡、抗炎、增强肠道免疫等功能,从而延缓炎症性肠病的发生发展。结论: 本研究提示半夏泻心汤及其拆方通过多成分、多靶点和多重药理作用改善炎症性肠病,为进一步从实验角度探索半夏泻心汤及其拆方治疗炎症性肠病及改善肠道免疫机制提供了实验依据和研究思路。

本文引用格式

霍敏峰 , 岳娟 , 董秋梅 , 刘喜平 , 刘君 , 张媛媛 , 李明成 . 半夏泻心汤及其拆方改善炎症性肠病肠道免疫的潜在靶点及作用机制的网络药理学分析*[J]. 包头医学院学报, 2023 , 39(2) : 62 -72 . DOI: 10.16833/j.cnki.jbmc.2023.02.011

Abstract

Objective: To study the mechanism of Banxia Xiexin decoction and its disassembled prescriptions on improving intestinal immunity of patients with inflammatory bowel disease (IBD). Methods: The active ingredients and targets of Banxia Xiexin decoction and its disassembled prescriptions were screened out from the Traditional Chinese Medicine System Pharmacology Database (TCMSP). Genecards and OMMI databases were used to screen potential targets related to inflammatory bowel disease. After intersection, Cytoscape 3.7.0 was used to make the active ingredient-target network chart, and the protein-protein interaction (PPI) network was drawn with String, and the signal pathway between drugs and inflammatory bowel disease was analyzed using GO and KEGG pathway enrichment analysis. Results: There were 129 active components in Banxia Xiexin decoction, 43 in Xinkai (Banxia + dried ginger) group, 104 in Kujiang (radix scutellariae + coptidis rhizoma) group and 121 in Ganbu (ginseng + radix glycyrrhizae + jujube) group. Further analysis found that Quercetin, Beta sitosterol, Kaemoferol, Stigmasterol, Baicalein and other active components in Banxia Xiexin Decoction group were closely related to PTGS1, AR, ESR1, PRSS1, PPARG and other IBD disease targets, and may be involved in the regulation through AGE-RAGE and TNF signaling pathway. In Xinkai group, the results showed that β-sitosterol, Baicalein, Stigmasterol, Cavendine), Coniferin and other active components were related to PTGS1, Chrm1, Chrm3, PGR, AR targets, and involved in P53 signaling pathway. Quercetin, Baicalein, Wogonin, Beta-sitosterol, Acacetin in Kujiang group were related to PTGS1, AR, PRSS1, ESR1 and CHEK1 targets, and involved in P13K-Akt, AGE-RAGE, P53 and TNF signaling pathway. In Ganbu group, Quercetin, Kaemoferol, β-sitosterol, Stigmasterol, Isorhamnetin and other active components were related to ESR1, PPARG, AR, PTGS1 and PRSS1 targets, and involved in AGE-RAGE and TNF signaling pathway by playing a role of anti-apoptosis, anti-inflammatory, and enhancing intestinal immunity to inhibit the occurrence and development of IBD. Conclusion: Banxia Xiexin decoction and its disassembled prescriptions could improve IBD for their multi-component, multi-target and multi pharmacological effects.

参考文献

[1] Shapiro JM, Subedi S, LeLeiko NS. Inflammatory bowel disease[J]. Pediatr Rev, 2016, 37(8): 337-347.
[2] Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review[J]. Gastroenterology, 2012, 142(1): 46-54, e30.
[3] Ouyang Q, Tandon R, Goh KL, et al. The emergence of inflammatory bowel disease in the Asian Pacific region[J]. Curr Opin Gastroenterol, 2005, 21(4): 408-413.
[4] O'Toole A, Korzenik J. Environmental triggers for IBD[J]. Curr Gastroenterol Rep, 2014, 16(7): 396.
[5] Halmos EP, Gibson PR. Dietary management of IBD-insights and advice[J]. Nat Rev Gastroenterol Hepatol, 2015, 12(3): 133-146.
[6] Cho JH, Weaver CT. The genetics of inflammatory bowel disease[J]. Gastroenterology, 2007, 133(4): 1327-1339.
[7] Connelly TM, Berg AS, Harris LR, et al. Genetic determinants associated with early age of diagnosis of IBD[J]. Dis Colon Rectum, 2015, 58(3): 321-327.
[8] Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease[J]. Nature, 2007, 448(7152): 427-434.
[9] Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-beta induces development of the T(H)17 lineage[J]. Nature, 2006, 441(7090): 231-234.
[10] Mikhailov TA, Furner SE. Breastfeeding and genetic factors in the etiology of inflammatory bowel disease in children[J]. World J Gastroenterol, 2009, 15(3): 270-279.
[11] 鲍海琴, 陈本启, 赵伟, 等. 半夏泻心汤对重症急性胰腺炎大鼠肠道损伤的保护作用及肠组织p38MAPK/NF-κB表达的影响[J]. 中国中医急症, 2019, 28(8): 1378-1382.
[12] 胡传文, 江红娟, 郑小春, 等. 半夏泻心汤结合保留灌肠治疗缓解期溃疡性结肠炎及对肠道内菌群水平的影响[J]. 新中医, 2020, 52(3): 10-12.
[13] Zou HY, Ye HQ, Kamaraj R, et al. A review on pharmacological activities and synergistic effect of quercetin with small molecule agents[J]. Phytomedicine, 2021, 92: 153736.
[14] Chen ZG, Yuan QL, Xu GR, et al. Effects of quercetin on proliferation and H2O2 - induced apoptosis of intestinal porcine enterocyte cells[J]. Molecules, 2018, 23(8): 2012.
[15] Bahar E, Kim JY, Yoon H. Quercetin attenuates manganese - induced neuroinflammation by alleviating oxidative stress through regulation of apoptosis, iNOS/NF-kappa B and HO-1/Nrf2 pathways[J]. Int J Mol Sci, 2017, 18(9): 1989.
[16] Zhang CL, Zhang S, He WX, et al. Baicalin may alleviate inflammatory infiltration in dextran sodium sulfate-induced chronic ulcerative colitis via inhibiting IL-33 expression[J]. Life Sci, 2017, 186: 125-132.
[17] 冯思敏, 宁可, 邵平, 等. β-谷甾醇和豆甾醇对小鼠急性结肠炎的治疗作用研究[J]. 中国粮油学报, 2018, 33(12): 80-86.
[18] Hayden MS, Ghosh S. NF-kappa B in immunobiology[J]. Cell Res, 2011, 21(2): 223-244.
[19] Tobon-Velasco JC, Cuevas E, Torres-Ramos MA. Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress[J]. CNS Neurol Disord Drug Targets, 2014, 13(9): 1615-1626.
[20] Achkar JP, Dassopoulos T, Silverberg MS, et al. Phenotype-stratified genetic linkage study demonstrates that IBD2 is an extensive ulcerative colitis locus[J]. Am J Gastroenterol, 2006, 101(3): 572-580.
[21] Lee Y, Gustafsson AB. Role of apoptosis in cardiovascular disease[J]. Apoptosis, 2009, 14(4): 536-548.
[22] Scatena R, Bottoni P, Botta G, et al. The role of mitochondria in pharmacotoxicology: a reevaluation of an old, newly emerging topic[J]. Am J Physiol Cell Physiol, 2007, 293(1): C12-C21.
[23] 钟文洲, 林松挺, 陈正义, 等. 溃疡性结肠炎中Gal-3与BCL-2表达的意义[J]. 临床与实验病理学杂志, 2017, 33(12): 1328-1332.
[24] Boal CP, Cotter J. Mucosal healing in ulcerative colitis: a comprehensive review[J]. Drugs, 2017, 77(2): 159-173.
[25] Huang WC, Liang J, Nagahashi M, et al. Sphingosine-1-phosphate phosphatase 2 promotes disruption of mucosal integrity, and contributes to ulcerative colitis in mice and humans[J]. FASEB J, 2016, 30(8): 2945-2958.
[26] 张瀚文, 石岩. 黄芪-红参治疗糖尿病视网膜病变的潜在靶点及网络药理学作用机制研究[J]. 中华中医药学刊, 2021, 39(5): 101-106.
[27] Hacker G, Paschen SA. Therapeutic targets in the mitochondrial apoptotic pathway[J]. Expert Opin Ther Targets, 2007, 11(4): 515-526.
[28] 唐松涛. 胰高血糖素样肽-1对晚期糖基化终末产物诱导血管内皮细胞肌球蛋白轻链磷酸化的影响及机制研究[D]. 合肥: 安徽医科大学, 2016.
[29] Muniraju M, Mutsvunguma LZ, Foley J, et al. Kaposi Sarcoma - associated herpesvirus glycoprotein H is indispensable for infection of epithelial, endothelial, and fibroblast cell types[J]. J Virol, 2019, 93(16): e00630-19.
[30] Boshoff C, Schulz TF, Kennedy MM, et al. Kaposi's sarcoma-associated herpesvirus infects endothelial and spindle cells[J]. Nat Med, 1995, 1(12): 1274-1278.
[31] Dupin N, Fisher C, Kellam P, et al. Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma[J]. Proc Natl Acad Sci USA, 1999, 96(8): 4546-4551.
[32] Veettil MV, Bandyopadhyay C, Dutta D, et al. Interaction of KSHV with host cell surface receptors and cell entry[J]. Viruses, 2014,6(10):4024-4046.
[33] Bechtel JT, Liang Y, Hvidding J, et al. Host range of Kaposi's sarcoma-associated herpesvirus in cultured cells[J]. J Virol, 2003, 77(11): 6474-6481.
[34] Yu XL, Sha JF, Xiang S, et al. Suppression of KSHV-induced angiopoietin-2 inhibits angiogenesis, infiltration of inflammatory cells, and tumor growth[J]. Cell Cycle, 2016, 15(15): 2053-2065.
[35] Bhaskaran N, Ghosh SK, Yu X, et al. Kaposi's sarcoma-associated herpesvirus infection promotes differentiation and polarization of monocytes into tumor-associated macrophages[J]. Cell Cycle, 2017, 16(17): 1611-1621.
[36] Xie YB, Shi XF, Sheng K, et al. PI3K/Akt signaling transduction pathway, erythropoiesis and glycolysis in hypoxia (Review)[J]. Mol Med Rep, 2019, 19(2): 783-791.
[37] Sun K, Luo J, Guo J, et al. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: a narrative review[J]. Osteoarthritis Cartilage, 2020, 28(4): 400-409.
[38] So T, Ishii N. The TNF-TNFR family of co-signal molecules[J]. Adv Exp Med Biol, 2019, 1189: 53-84.
文章导航

/