目的: 建立呼吸酒精经时变化方法学,通过检测20~22岁青年酒精摄入后呼吸酒精经时变化反映血酒浓度,比较酒精代谢动力学性别差异。方法: 采用警用呼吸酒精检测仪检测呼气末酒精浓度的经时变化,使用代谢动力学软件DAS 3.0对代谢动力学数据进行分析,比较20~22岁青年饮酒后代谢的性别差异。结果: 该方法检测变异系数小于5 %。男女青年饮42°100 mL白酒后,女性药时曲线下面积AUC(0-t)大于男性,体内驻留时间MRT(0-t)明显长于男性,清除率CLz小于男性。结论: 该方法简便、无创、可行,重现性好。20~22岁青年饮用同等量的白酒,男性代谢快于女性。体内酒精完全清除女性平均需要3.5 h左右,而男性仅仅需要2.0 h左右。建立了该年龄段的青年饮酒代谢动力学数据。
Objective: To detect the change of breath alcohol level over time in 20 to 22 years old youth by establishing a methodology, and to to reflect blood alcohol concentration, and to compare the sex differences in alcohol metabolism. Methods: The change of end-tidal alcohol concentration over time was detected with police breathalyzer, and the software DAS 3.0 was used to analyze the metabolic kinetics, and the sex differences of alcohol metabolism after drinking among youths aged 20 to 22 years. Results: The coefficient of variation detected by this method was less than 5 %. After drinking 100ml Chinese spirit (52 % alcohol by volume), the area under the curve AUC(0-t) in females was larger than that in males, the MRT(0-t) in vivo of females was significantly longer than that of males, and the clearance rate CLz in females was smaller than that in males. Conclusion: The method is simple, non-invasive, feasible and reproducible. Young males aged 20 to 22 metabolize faster than females of the same age after intaking same amount of liquor. On average, it takes about 3.5 hours for females aged 20 to 22 completely removing alcohol from the body, while it only takes about 2 hours for males in the same age group. Metabolic kinetics of alcohol in this age group was established in this study.
[1] 曹宁, 席云峰, 牛丽薇, 等. 内蒙古心血管病高危人群饮酒模式与健康相关生活质量的关系[J]. 中华疾病控制杂志, 2022, 26(4): 401-405, 411.
[2] 王崇民. 《中国居民膳食指南科学研究报告(2021)》正式发布[J]. 食品安全导刊, 2021, (7): 15.
[3] 许宏智. 饮酒[M]. 呼和浩特: 内蒙古大学出版社, 2020, 107.
[4] 赵首年, 王飞. 西安市餐饮酒吧街区酒后驾驶综合干预效果及酒后驾驶行为影响因素分析[J]. 中国健康教育, 2021, 37(1): 81-84.
[5] Reiter GS, Boeckle M, Reiter C, et al. The impact of total body water on breath alcohol calculations [J]. Wien Klin Wochenschr, 2020, 132(17/18): 535-541.
[6] Siciliano V, Mezzasalma L, Scalese M, et al. Drinking and driving among Italian adolescents: Trends over seven years (2007-2013)[J]. Accid Anal Prev, 2016, 88: 97-104.
[7] Firentino DD. The effects of breath alcohol concentration on postural control[J]. Traffic Inj Prev, 2018, 19(4): 352-357.
[8] Drummond-Lage AP, Freitas RG, Cruz G, et al. Correlation between blood alcohol concentration (BAC), breath alcohol concentration (BrAC) and psychomotor evaluation in a clinical monitored study of alcohol intake in Brazil[J]. Alcohol, 2018, 66: 15-20.
[9] 尹彦品, 王艳荣. 醉酒型危险驾驶罪回顾与完善刍议[J]. 河北法学, 2022, 40(4): 185-200.
[10] Hostiuc S, Radu D, Seretean L, et al. Driving under the influence of alcohol during the COVID-19 pandemic[J]. Forensic Sci Int, 2021, 329: 111076.
[11] Oginni FO, Bamgbose BO, Oginni OC, et al. Nigerian law enforcement agents' knowledge and enforcement of drink-drive law[J]. Traffic Inj Prev, 2021, 22(6): 425-430.
[12] Juri A, Fijako A, Bakuli L, et al. Evaluation of breath alcohol analysers by comparison of breath and blood alcohol concentrations[J]. Arh Hig Rada Toksikol, 2018, 69(1): 69-76.
[13] 郑强, 李超, 王平, 等. 葛根素纯化工艺及其解酒效应[J]. 食品工业科技, 2018, 39(16): 166-170.
[14] 吴胜. 血液中乙醇检测方法的探讨[J]. 中国卫生检验杂志, 2013, 23(16): 3316-3318.
[15] 钟继昌, 谢金涛. CYP2E1在酒精性肝病发病中的作用研究进展[J]. 九江学院学报(自然科学版), 2021, 36(4): 99-101.
[16] 张茹, 曲中原, 杜娟. 基于Nrf2-HO-1/CYP2E1通路探讨五指毛桃醇提取物对酒精性肝损伤小鼠的抗氧化保护机制[J]. 中药新药与临床药理, 2021, 32(12): 1769-1775.
[17] 戴晨曦, 阿尔斯拉·玉苏甫, 孙慧, 等. 熊胆粉通过调节Keap1/Nrf2/ARE信号通路产生对急性酒精性肝损伤小鼠的肝保护作用[J]. 世界科学技术-中医药现代化, 2021, 23(11): 4081-4089.
[18] 白路平, 乔向宇, 吉日木图, 等. 骆驼乳对小鼠酒精性肝损伤的保护作用[J]. 中国食品学报, 2022, 22(2): 140-149.
[19] 梁晓琳, 汪午屏, 董嘉乐, 等. 龙虎人丹对小鼠酒精性肝损伤的保护作用研究[J]. 中药药理与临床, 2021, 37(2): 18-22.
[20] 庞硕, 吕丹, 张连峰. 二烯丙基硫醚通过靶向抑制CYP2E1对相关疾病治疗的潜在作用[J]. 中国比较医学杂志, 2019, 29(8): 117-121.