临床医学论著

糖尿病下肢深静脉血栓的临床预测模型的建立与验证*

  • 王赞 ,
  • 谢晓云 ,
  • 丁安乐 ,
  • 郭鹏 ,
  • 周梦蝶 ,
  • 刘阳 ,
  • 殷世武
展开
  • 1.安徽理工大学,安徽淮南 232001;
    2.同济大学附属上海市第十人民医院介入血管外科

收稿日期: 2022-08-16

  网络出版日期: 2023-01-06

基金资助

*国家自然科学基金(82072024)

Establishment and validation of a clinical prediction model for diabetic lower extremity deep venous thrombosis

  • WANG Zan ,
  • XIE Xiaoyun ,
  • DING Anle ,
  • GUO Peng ,
  • ZHOU Mengdie ,
  • LIU Yang ,
  • YIN Shiwu
Expand
  • 1. Anhui University of Science and Technology,Huainan 232001,China;
    2. Dept of interventional &vascular surgery, Tenth People's Hospital, Tongiji University

Received date: 2022-08-16

  Online published: 2023-01-06

摘要

目的: 构建糖尿病患者发生下肢深静脉血栓风险的临床预测模型,为临床提供预警。方法: 选取同济大学附属同济医院2018年11月至2021年11月的住院患者共281例,其中明确诊断糖尿病患者合并下肢深静脉血栓的111例患者作为试验组,明确诊断糖尿病无下肢深静脉血栓的170例患者作为对照组。对该模型进行评价,使用最小绝对收缩和选择算子(lasso)回归模型对糖尿病下肢深静脉血栓风险模型的特征选择进行优化。应用单因素和多元Logistic回归分析,将lasso回归模型中选取的特征相结合,建立预测模型诺模图(nomogram)。使用C指数、校准曲线图和决策曲线分析来评估预测模型的区分性、校准和临床实用性。结果: 单因素分析结果显示两组患者年龄、餐后2 h血糖、糖化血红蛋白、总胆固醇、高密度脂蛋白、纤维蛋白原、凝血酶原时间、D2聚体、血红蛋白、C反应蛋白、总蛋白、中性粒细胞数、淋巴细胞数、碱性磷酸酶、谷草转氨酶存在显著差异(P<0.05)。多因素分析结果显示年龄、餐后2 h血糖、糖化血红蛋白、D2聚体、C反应蛋白、碱性磷酸酶、淋巴细胞数、谷丙转氨酶为糖尿病患者合并下肢深静脉血栓的独立相关因素。该模型具有良好的区分性,C指数为0.928,具有良好的校准性,受试者曲线显示良好的预测能力。结论: 本研究构建的nomogram结合了年龄、餐后2 h血糖、糖化血红蛋白、D2聚体、血红蛋白、C反应蛋白、碱性磷酸酶、谷草转氨酶,可以方便准确地对糖尿病合并深静脉血栓的风险预测。

本文引用格式

王赞 , 谢晓云 , 丁安乐 , 郭鹏 , 周梦蝶 , 刘阳 , 殷世武 . 糖尿病下肢深静脉血栓的临床预测模型的建立与验证*[J]. 包头医学院学报, 2022 , 38(12) : 17 -22 . DOI: 10.16833/j.cnki.jbmc.2022.12.004

Abstract

Objective: To construct a clinical prediction model for the indication of DVT risk in patients with diabetes, and to provide early warning for clinical practice. Methods: A total of 281 inpatients were selected from November 2018 to November 2021 in Shanghai Tongji Hospital Affiliated to Tongji University, among which 111 patients were diagnosed of diabetes mellitus complicated with lower extremity and deep vein thrombosis and set as the experimental group, and the other 170 patients during the same period diagnosed of diabetes without deep vein thrombosis were selected as the control group. The model was evaluated and optimized using the least absolute contraction and selection operator regression model for the feature selection of the diabetic lower extremity deep vein thrombosis risk model. Univariate and multivariate logistic regression analysis combined with the least absolute shrinkage and features selected in the selection operator regression model were applied to build a predictive model. C-index, calibration curve plots, and decision curve analysis were used to assess the discriminability, calibration, and clinical utility of predictive models. Result: Single factor analysis results showed significant differences(P<0.05)among factors such as age, 2 hours after meal, glycosylated hemoglobin, total cholesterol, high-density lipoprotein cholesterol, fibrinogen, prothrombin time, D2 polymers, hemoglobin, c-reactive protein, total protein, neutrophil count, lymphocyte count, alkaline phosphatase, and aspertate aminotransferase. Multivariate analysis showed that age, two-hour postprandial blood glucose, glycosylated hemoglobin, D2 polymers, C-reactive protein, alkaline phosphatase, lymphocyte count, and alanine aminotransferase were independent factors associated with lower extremity deep vein thrombosis in patients with diabetes mellitus. The model is discriminative with a C-index of 0.928, which is with well calibrated. The subject curve showed good predictive power. Conclusion: The nomogram plotted with age, two-hour postprandial blood glucose, glycosylated hemoglobin, D2-mer, hemoglobin, C-reactive protein, alkaline phosphatase, and aspartate aminotransferase, can be conveniently used for risk prediction of diabetes complicated with deep vein thrombosis.

参考文献

[1] Sun H, Saeedi P, Karuranga S, et al. IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Res Clin Pract, 2022, 183:109119.
[2] Ma RCW. Epidemiology of diabetes and diabetic complications in China[J]. Diabetologia, 2018, 61(6):1249-1260.
[3] Strain WD, Paldánius PM. Diabetes, cardiovascular disease and the microcirculation[J].Cardiovasc Diabetol, 2018, 17(1):57.
[4] Martínez-Castelao A, Navarro-González JF, Górriz JL, et al. The concept and the epidemiology of diabetic nephropathy have changed in recent years[J]. J Clin Med, 2015, 4(6):1207-1216.
[5] Zakin E, Abrams R, Simpson DM. Diabetic neuropathy[J]. Semin Neurol, 2019, 39(5):560-569.
[6] Faselis C, Katsimardou A, Imprialos K, et al. Microvascular complications of type 2 diabetes mellitus[J]. Curr Vasc Pharmacol, 2020, 18(2):117-124.
[7] Khan F, Tritschler T, Kahn SR, et al. Venous thromboembolism[J]. Lancet, 2021, 398(10294):64-77.
[8] Strijkers RH, Cate-Hoek AJ, Bukkems SF, et al. Management of deep vein thrombosis and prevention of post-thrombotic syndrome[J]. BMJ, 2011, 343:d5916.
[9] Lv B, Hu L, Fang H, et al. Development and validation of a nomogram incorporating colloid osmotic pressure for predicting mortality in critically ill neurological patients[J]. Front Med(Lausanne), 2021, 8:765818.
[10] Ye JZ, Mai RY, Guo WX, et al. Nomogram for prediction of the international study Group of Liver Surgery (ISGLS) grade B/C Posthepatectomy liver failure in HBV-related hepatocellular carcinoma patients: an external validation and prospective application study[J]. BMC Cancer, 2020, 20(1):1036.
[11] Ferrannini G, Manca ML, Magnoni M, et al. Coronary artery disease and type 2 diabetes:a proteomic study[J]. Diabetes Care, 2020, 43(4):843-851.
[12] Stone J, Hangee P, Albadawl H, et al. Deep vein thrombosis: pathogenesis, diagnosis, and medical management[J]. Cardiovasc Diagn Ther, 2017, 7(suppl 3):S276-S284.
[13] Chopard R, Albertsen IE, Piazza G. Diagnosis and treatment of lower extremity venous thromboembolism: a review[J]. JAMA, 2020, 324(17):1765-1776.
[14] Al-Sofiani ME, Ganji SS, Kalyani RR. Body composition changes in diabetes and aging[J].J Diabetes Complications, 2019, 33(6):451-459.
[15] Shou J, Chen PJ, Xiao WH. Mechanism of increased risk of insulin resistance in aging skeletal muscle[J]. Diabetol Metab Syndr, 2020, 12:14.
[16] Rhee SY, Kim YS. The role of advanced glycation end products in diabetic vascular complications[J]. Diabetes Metab J, 2018, 42(3):188-195.
[17] Brownlee M. Biochemistry and molecular cell biology of diabetic complications[J]. Nature, 2001, 414(6865):813-820.
[18] 张琳, 杨秋萍, 吴亚楠, 等. 老年2型糖尿病患者下肢深静脉血栓形成的相关危险因素[J]. 中国老年学杂志,2011,31(15):2817-2820.
[19] Tritschler T, Kraaijpoel N, Le Gal G, et al. Venous thromboembolism: advances in diagnosis and treatment[J]. JAMA, 2018, 320(15):1583-1594.
[20] Folsom AR, Lutsey PL, Astor BC, et al. C-reactive protein and venous thromboembolism. A prospective investigation in the ARIC cohort[J]. Thromb Haemost, 2009, 102(4):615-619.
[21] Branchford BR, Carpenter SL. The role of Inflammation in venous thromboembolism[J].Front Pediatr, 2018, 23(6): 142.
文章导航

/